

Inside Relational Databases
with Examples in Access

Inside Relational
Databases
with Examples in
Access

123

Mark Whitehorn and Bill Marklyn

Mark Whitehorn
Applied Computing Division, University of Dundee, UK

Bill Marklyn
2332 E Aloha Street, Seattle WA 98112, USA

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006931000

ISBN-10: 1-84628-394-9 Printed on acid-free paper
ISBN-13: 978-1-84628-394-9

© Mark Whitehorn 2007

Apart from any fair dealing for the purposes of research or private study, or criti-
cism or review, as permitted under the Copyright, Designs and Patents Act 1988,
this publication may only be reproduced, stored or transmitted, in any form or by
any means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those
terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the
relevant laws and regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accu-
racy of the information contained in this book and cannot accept any legal responsi-
bility or liability for any errors or omissions that may be made.

Typeset by Fields Place Productions

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

v

Contents

Contents

Preface xiii

Chapter 1 Introduction 1
Who are we? 1
What is a database? 2
Databases vs. Database Management Systems 3
Relational Database Management Systems 3
Why this book? 4
Who should read this book? 5
Organization of the book 6
Some ground rules 7
Downloading files from the website 8
Acknowledgements 8
We don’t have problems … 9
Outroduction 9

Part 1 – A simple, single-table database 11

Chapter 2 Introduction to Part 1 13

Tables 13
Queries/Views 14
Forms 14
Reports 15

vi

Contents

Chapter 3 Tables 17

Rows & columns – records & fields 18
Building a table 22
Types of data 23
Meaningful operations 24
Excluding certain errors 26
Making storage more efficient 26
Making data recall more rapid 28
Field size 28
General notes on table design 29

Chapter 4 Queries/Views 36

Queries usually find subsets of the data 36
Queries, answer tables and base tables finally defined properly

and closure mentioned briefly 37
Summarizing data 42
Other useful queries 42
Graphical querying tools 43
SQL and Views 44

Chapter 5 Forms 45

Multiple forms per table 48
Text boxes can be made read only 49
Text boxes don't have to present data from just one field 49
It isn't necessary for each field in a table to appear on the form 51
Controlling data entry 51
Use of forms can be controlled 51
Forms can be web pages 51
Summary 52

Chapter 6 Reports 54

Chapter 7 Summary of Part 1 56

vii

Contents

Part 2 – A multi-table database 59

Chapter 8 Introduction to Part 2 61

Chapter 9 Serious problems with single tables 62

Redundant data 63
Typographical errors 63
Modifying data 64
Summary 65

Chapter 10 Multiple tables cure serious problems 67

Redundant data 69
Typographical errors 72
Modifying data 72

Chapter 11 Making multiple tables work together 73

Databases are designed to model the real world 74

Chapter 12 Getting the data into the correct tables 75

Not normalization (and not ER modeling either) 77
Object identification 78

Chapter 13 Relationships in the real world 81

One-to-many 81
One-to-one 82
Many-to-many 82
None 82
Mapping real world relationships to tables 83

Chapter 14 How are relationships modeled? 84

Primary keys 86
Foreign keys 91
Summary so far 92
Joins 93

viii

Contents

General lessons about joins 106

Chapter 15 Revisiting the big four – the synergy begins 112
Closure 112
Tables 115
Queries (and a bit on forms) 116
Forms 123
Reports 124

Chapter 16 Integrity 127

Data integrity – is it worth the effort? 127
Types of data integrity error (and some cures) 128
Declarative and procedural referential integrity 134
Nulls in foreign keys 139
These options in context 142
Other integrity issues 143
Integrity – where should you set it? 143

Chapter 17 Summary of Part 2 146

Part 3 – Database Design & Architecture 147

Chapter 18 Database design 149

Designing databases – user, logical and physical models 149
The Logical model – overview 151
More about the logical model 152
CASE tools 154
Summary so far 158
The final big advantage of CASE tools 158
More about the differences between the Logical and Physical

models 160
Reality check 162
Normalization can help 162

ix

Contents

Reverse engineering 163
Methodologies 164
Summary of design models 164

Chapter 19 The seven layers of wisdom 165
The seven layers of wisdom 165

Chapter 20 Database architecture 168

Default Architecture in Access 168
Access – PC front end – data on file server 168
Client-server (or two-tier) architecture 171
Three-tier architecture (also known as multi-tier) 173
Web-based applications 174
Choosing a database architecture 176
What comes next 177

Part 4 – Related database topics 179

Chapter 21 What exactly is a relational database? 181

Do multiple tables a relational database make? 181

Chapter 22 Triggers and stored procedures 183

Triggers 183
Stored procedures 187
Summary – triggers and stored procedures 189

Chapter 23 Transactions, logs, backup, locking and
concurrency 190

Transactions 190
Logs 191
Locking 197
Concurrency 199
Row locking and page locking 199

x

Contents

Access and the features described in this chapter 200
Answers from earlier 200

Chapter 24 Codd’s rules 201

Codd's rules 201
Economy vs. readability 201
A little background 202
The rules themselves 202
Summary 213

Chapter 25 Normalization 215

A first look at normalization 215
First normal form (first level of normalization): 1NF 216
Second normal form (second level of normalization): 2NF 218
Third normal form (third level of normalization): 3NF 220
Summary so far 221
Adding some definitions 222
Summary (again) 231

Chapter 26 More about normalization 233

Higher normal forms 233
Normalization doesn't automatically remove all

redundancy 237
Summary 242

Chapter 27 The system tables 244

Chapter 28 More on queries: data manipulation 246

Relational operators 246
Summary 256

Chapter 29 SQL 258

SELECT and FROM 261
DISTINCT 262

xi

Contents

WHERE 262
Conditions 263
ORDER BY 267
Wildcards 270
Sub-queries 271
Built-in functions 272
GROUP BY – collecting information 276
GROUP BY…HAVING – collecting specific information 282
Working with multiple tables 285
Inner (Natural) joins 290
Outer joins 291
UNION 293
SELECT summary 296
INSERT 297
UPDATE 300
DELETE 302
A question (and a free SQL diagnostic tool) 303
Summary 306

Chapter 30 Domains 307

Chapter 31 What does null mean? 309

Chapter 32 Primary keys 313

Candidate keys 315

Part 5 – Speeding up your database 317

Chapter 33 Hardware considerations 319

CPUs 320
Memory 320
Disks 322

xii

Contents

Data volume vs. disk capacity 322
Don t put all your eggs in one basket 323

Chapter 34 Indexing 324

Indexing techniques 324
Applying indexes – which fields/columns should be

indexed? 333
Intelligent use of indexes 337

Chapter 35 More on optimization 338

Query optimization 338
Update statistics 339
Query analysis 340
Writing good SQL code 342

Chapter 36 Denormalization 344

Mirroring tables 345
Splitting tables 346
Redundant data 348
Repeating groups (breaking 1NF) 349
Derived columns 351
Summary 352

Appendix 1 GUIs, macros and control languages 353

Creating a very simple user interface 353
Other languages – SQL 362

Index 365

xiii

Contents

Preface

Bill and I first wrote Inside Relational Databases to help people who
were new to building databases. We could find lots of books that told
people how to use their database engine of choice (Access, SQL Server,
MySQL, whatever) but very few that described the underlying way in
which relational databases work. So we wrote one. We guessed that
many of the readers would be using Access, so we used Access to illus-
trate the relational model and called the book “Inside Relational Data-
bases – with examples in Access”. However, we did try very hard to
make it clear that the book wasn’t about how to drive Access; it was
about the relational model that underpins all relational databases. We
were simply using Access for illustrative purposes. To our enormous re-
lief this was understood by those people kind enough to buy it and the
book sold well.
For the second edition we expanded the book to include information
about client-server databases and we illustrated that book with images
from several database engines so we dropped ‘with examples in Access’
from the title.
That second edition was, happily, also well received, so eventually we
turned our thoughts to another edition. It seemed to us very important
that we continue to focus the book on the relational model and not turn it
into a “Teach yourself about database X” book. On the other hand, we
were nagged by the feeling that it is very convenient for the reader if we
illustrate the relational model using their favorite product – such as Ac-
cess. Eventually we realized that all we had to do was to produce several
versions of the same book, each based on a different database engine.
Which is why you have in your hand a copy of “Inside Relational Data-
bases – with examples in Access”. If this isn’t your database engine of
choice, scan the internet and see if we have come up with one that
matches your requirements. If not, email me Mark@Penguinsoft.co.uk.
We’re not proud. We’ll do a version for any relational database engine if
enough people want it.

xiv

Contents

Should we tell you the whole story?

Of course, there is an inevitable tension in trying to work like this. For
example, in Chapter 16 we talk about referential integrity. There are es-
sentially six different flavors of referential integrity but Access only sup-
ports four of them (they are the most important ones however, so you
aren’t missing out on too much). The problem is this. Should we tell you
about the other two? If we do, as an Access user you have every right to
be annoyed that we are telling you about a feature you can’t use. On the
other hand, the six different types that we describe are part of the rela-
tional world and this book is about that world – we are not trying to
teach you how to use Access, we are simply using Access to illustrate the
relational model. Ultimately we decided to risk your ire and to describe
all of the features of the relational model as we see it, even if Access
doesn’t support all of them. One advantage of this approach is that if you
need to use a different database engine you will almost certainly find the
extra information useful.
Incidentally, this is not meant to imply that Access is somehow lacking
as a relational database engine. The reason we chose it for the first book
is that it is such a good example of a relational database tool. We are put-
ting exactly the same warning in all the versions of the book that we
write – there are no engines that support all aspects of the relational
model.

Other changes

We have also taken this opportunity to restructure the book significantly.
I (Mark) continue to teach database design and practice, both to under-
graduates and in the commercial world. Without doubt the most popular
topic in the commercial world is how to make databases run faster (no
great surprise there) so we have added an entire section of brand new
material – more than 10% of the entire book – on that topic. The section
on designing databases has been reorganized and expanded and we also
re-read the entire book (several times) and brought it all up to date.

Preface

1 • Introduction

1

Chapter 1

Introduction

Chapter 1 of Sir Henry Birkin’s autobiography “Full Throttle”, published in
1932, ends with the following: “I can waste no more time on this matter; for the
end is reached of what I now confess to have been 24 pages of deceit. I have
disguised under the designation of Chapter One what was really nothing more
than an introduction; but I know quite well, that had I been honest and called
it an introduction, nobody would have read it.”
If Henry Birkin wasn’t my hero for racing two-ton motor cars on appalling
road surfaces at speeds well in excess of 100 m.p.h., he would be my hero for
sheer literary nerve.
I’ll be less disingenuous. This chapter iis an introduction. It defines the very
basic terms that you may need like ‘database’, ‘relational’, ‘DBMS’ and
‘RDBMS’. It tells you why the book was written, at whom it is aimed, and how
it is organized.
If you know all of this already, or it sounds tedious and you really want to get
down to the nitty gritty, please don’t bother reading this chapter; dive straight
into the book at Chapter 2 or wherever you fancy. As far as we’re concerned,
anyone who has paid us the considerable compliment of actually exchanging
money for our words is entitled to read them as they please.

Who are we?
This book has two authors: Mark Whitehorn and Bill Marklyn.
Bill worked for Microsoft as the Development Manager for the first three ver-
sions of Access (1.0, 1.1 and 2.0). I (Mark) work as a database consultant, teach
database theory and practice at two Universities and have written the UK Per-
sonal Computer World’s database column for more than twelve years.
We met (at a database conference, not unreasonably, given our interests) in the

1 • Introduction

2

summer before Access 1.0 was launched and found that we shared similar
views on how databases should be designed and built. We wrote the original
version of this book in 1997 and have worked together on book projects ever
since.
I (Mark) penned most of the words and whenever the pronoun ‘I’ appears in
the text, I accept full responsibility. So what is Bill doing there on the front
cover? Well, writing down the words in a book is only one component. Books
also need ideas and enthusiasm. I may have written the words, but Bill, more
than anyone else, fired my interest in writing this book, provided his own
inexhaustible enthusiasm and many of the ideas. I couldn’t have written it
without him, and he would probably not have found the time to write it him-
self, so it is truly a joint venture.

What is a database?
A database is simply a collection of data. Nowadays the term tends to be used
about computerized systems, but the old cards which were used to classify
and locate books in a library are a good example of a non-computerized data-
base. The difference computers have made to databases is deceptively simple:
computers make access to the data faster. That means, on a trivial level, that
instead of hunting through 50,000 pieces of cardboard in a dusty room for
three days, a computer will do the same job in under a second. However,
there is more to this speed than meets the eye.
Suppose I asked you to find me the names and addresses of all male hospital
patients in the country who are over 60 years old, have a history of diabetes
in the family and have two children. Given a local paper-based system, the
question is unanswerable in any meaningful way. By the time you have trav-
eled around the country and searched all the available records, most of said
patients would be dead. With centralized, computerized patient records, this
question should be answerable in minutes or at worst a few hours. So com-
puterizing databases hasn’t simply speeded them up, it has opened up whole
new ways of looking at data that simply weren’t possible before.
And databases are becoming ever more pervasive. If you book a seat on a
plane or train then someone, somewhere is using a database. A bank account
is nothing more than a complex database; credit card purchases, your
appointment with the doctor – all are likely to be entered into a database.

1 • Introduction

3

Databases vs. Database Management Systems
One important distinction which should be made early on in this book is the
difference between a database and the software which is used to control and
manipulate that database. A database is a collection of data – perhaps a list of
your customers, their addresses, fax numbers and so on. In order to keep the
data in your database under control, you need software known as a DBMS
(Database Management System). The DBMS is to a database what a word
processor is to a letter. The former is the controlling software, the latter the
data that it manipulates. Examples of DBMSs include Access, SQL Server,
MySQL, Oracle, DB2 – the list is not endless but certainly long. DBMSs are
also referred to as database engines.

Relational Database Management Systems
There are several fundamentally different ways in which data can be handled
or modeled – Hierarchical, Network and Relational are three such models.
Without doubt the most widely used is the relational model, the brainchild of
Dr Edgar Codd.
Codd is often described as ‘the Father of the Relational Database’ (with
obligatory upper-case letters) and this is perfectly fair since he came up with
the original idea which he announced to the world in 1970 with a paper enti-
tled "A Relational Model of Data for Large Shared Data Banks". This is often
quoted as Codd’s first paper on the relational model but in fact he published
one in 1969 called “Derivability, Redundancy, and Consistency of Relations
Stored in Large Data Banks”. However this paper was an IBM research report
and carried a limited distribution notice, so it wasn’t seen by many people at
the time.
Codd wrote with enormous precision, for example:

Note that a view is theoretically updatable if there exists a time-independent algo-
rithm for unambiguously determining a single series of changes to the base rela-
tions that will have as their effect precisely the requested changes in the view.

Since he is the original source, the very bedrock, from which this material
comes, it was vital that he wrote in such a way as to leave no doubt whatso-
ever as to the meaning. Indeed, his ability to communicate with such preci-
sion to both mathematicians and database people undoubtedly helped to pro-
mote the relational model. However, a side effect is that his material can be a
little difficult to follow on first reading.
Chris Date was at one time a co-worker of Codd’s and has, in my opinion,

1 • Introduction

4

done a wonderful job of explaining, popularizing and generally advancing
the use and understanding of the relational model. These two guys rank
alongside Henry Birkin in my hall of heroes.
So, why do you need to know anything about Codd and Date? Well, the
world of databases is crowded with people who will try to impress you with
their knowledge (which makes it exactly the same as every other branch of
life). If you don’t know these two names you can be seriously out-bluffed. For
example, in 1985 Codd published a set of rules which defined the concept of a
relational DBMS at that time. These rules have subsequently become en-
shrined in database lore and are constantly referred to in conversation – for
example, “You can’t do that, it contravenes Codd’s 7th rule!” Experience sug-
gests that very few people have actually gone back to the source material
(Computerworld, 14-21 October 1985) and read them, so simply knowing who
Ted Codd was and that he had a set of rules somewhere should be enough
information to allow you to argue on even terms. However, if you want to
know more about these rules, read Chapter 24 which lists and defines them
all in (hopefully) understandable terms.
As an aside, there is nothing to stop you from playing the same game. If you find that
you are being out-bluffed, you can try “Well, of course, when Chris contacted me
about this last week he said that ... [fill in appropriate supporting statement]”.
Very sadly, you can no longer substitute ‘Ted’ for ‘Chris’ because Edgar Codd died on
the 18th. April 2003. Out of all the tributes paid to him, for me the most touching
came from Sharon Weinberg, initially a colleague at IBM, later his second wife. “For
a while, we had work stations side by side. I'd see him staring at his screen, thinking.
I'd worry, and say, ‘Breathe, Ted, breathe!’ He'd work like a demon, you could not
break his focus.”
Any DBMSs you use are likely to be based on the relational model. Such
DBMSs are, perfectly sensibly, known as RDBMSs (Relational Database Man-
agement Systems).

Why this book?
One of the main aims of this book is to demystify the relational database
model. It is an excellent way of handling information and we want to make
the relational model accessible to more people. This book attempts to intro-
duce the concepts and ideas behind the relational model without the usual
jargon.
A fair question at this point is “Why should anyone want to know about the

1 • Introduction

5

relational model?”. The answer to that lies in the distinction between know-
ing hhow to use a software package to perform a specific task and knowing
why you would want to perform that task in the first place.
For example, if you browse through the Access help system, you will be able
to find out how to, for example, declare a primary key for a table.

Select the table.
Open it in Design view.
Select the field or fields you want to define as the primary key.
— To select one field, click the row selector for the desired field.
— To select multiple fields, hold down the CTRL key and then click the

row selector for each field.
Click Primary Key on the toolbar.

Great. Excellent, so now you know how to do it. But … what is a primary
key? Are they really important? Should every table have one? What are they
used for? The help system may give some pointers, but it is essentially
focused on telling you how to achieve a desired end result. We have a totally
different focus (although we may illustrate processes from time to time): we
tell you why you would want to do it in the first place. This book is about the
relational model because understanding the model is essential if you want to
create excellent, stable and robust databases.

Who should read this book?
You should read this book if:

 You have created databases but they don’t seem to work very well.
Perhaps you:
— can’t retrieve the information that you want.
— have to type in the same information over and over again.
— type in data and it appears to go missing.
— ask questions and get answers that you know are wrong.
— can use Access but you don’t know exactly what to do with it.
— know that a relational database lets you create multiple tables in the

database but you are uncertain why this is to your advantage.
— find that there are lots of features in a database that sound interest-

ing but you have no idea what you are supposed to do with them.

1 • Introduction

6

Or perhaps you hear words in connection with databases like:
— normalization
— functional dependency
— inner join
— union
— redundant data
— data dictionary
— meta-data
— ER modeling
— transaction
— concurrency
— locking
and you haven’t got the faintest idea what they mean and there is no
one you can ask.

As we said above, you shouldn’t read this book if you are looking for a ‘How
to use Access’ book.
If you are looking for such a book we feel honor bound to recommend
“Accessible Access 2003” published by Springer-Verlag, for the simple reason
that we wrote it …

Organization of the book
Within a database itself, the data is stored in tables. A simple database will
contain a single table; more complex ones can contain many tables. For exam-
ple, if you want to keep your address book in a database (as I do on a hand-
held computer) then a single table is perfect. However, if you want to store all
of the business transactions of a company, you will find that it is more effi-
cient to store the data in multiple tables – one for the customers, another for
the goods you sell and so on.
This book is divided into five parts.
Part 1 concentrates on databases which contain only single tables because this
should make some of the basic principles easier to understand. It describes
the components which make up a typical database:

tables
queries/views
user-interface components (forms)
reports

1 • Introduction

7

Part 2 explains that when most people start building more complex databases
they tend to try and put all of the data into one table. The section illustrates
why this is a bad idea and then outlines how you can use multiple tables to
overcome the problems inherent in single-table databases. Part 2 is a seriously
chunky section since much of the relational model is explained in there.
Part 3 discusses, in broad terms, where the components of your database can
be located. Databases (even when you are using a client-server database en-
gine like SQL Server) can be created on single, stand-alone machines, in
which case only one person can use the database at any one time. If you want
the database to have multiple, concurrent users (clearly a major advantage if
the database is used within a company), parts or all of it can be moved onto a
networked machine. However, allowing multiple people to manipulate the
same data at the same time introduces a whole host of new topics that you
need to understand if you are to build and manage effective databases.
Part 4 is very different from the other parts. The first three are lovingly hand-
crafted so that each chapter builds on the information in the previous one (or,
at least, that was the idea). The chapters in Part 4 can be read in any order be-
cause the information in each one is essentially unconnected to that in the
others. Much of the information in any given chapter in Part 4 assumes that
you do understand the information in Parts 1-3 but there is essentially no
cross-requirement between chapters in Part 4. Thus, if you understand the
information in Parts 1-3 and want to know about SQL, go straight to Chapter
29 and read it. If someone is bugging you with terms like ‘third normal form’
or ‘functional dependency’ then read the chapter on normalization (Chapter
25).
Part 5 is about speeding up your database and a range of techniques is dis-
cussed there.

Some ground rules
This book assumes that the reader will be interested in relational databases.
There are several other models for organizing data but the relational is the
most common. Thus, in the text which follows, in order to avoid continually
having to prefix the word ‘database’ with the word ‘relational’, you can as-
sume that I mean relational unless it is explicitly stated otherwise.
I am all too aware of the fact (having been corrected many times) that ‘datum’
is the singular form of ‘data’, and so I should write ‘every datum’ rather than
‘every piece of data’. The trouble is that using ‘data’ as both the singular and
plural forms is now so widespread that to do otherwise smacks of pedantry

1 • Introduction

8

and obscures rather than clarifies. I’ve been swayed by the common usage
argument and have used just ‘data’.
In fact, now is a good time to point out that this entire book fails to use exact
terminology. I know that a table isn’t a table, it is a ‘relation’. Or to be precise,
a table isn’t exactly a relation, it’s… and so on. I happily acknowledge that I
shouldn’t talk about the number of rows (or, slightly more accurately, the
number of ‘tuples’); what I really mean is the cardinality. Relational databases
have their origins in the precise world of mathematics and that particular
world has a very precise language. The trouble is that I also live and work in
the real world and in it real people talk about tables, rows and columns. So, at
the expense of a small degree of accuracy and the gain (I hope) of a great deal
of clarity, I have elected to use less formal terminology whenever possible.
Apologies are proffered in advance to those who are terminally offended.

Downloading files from the website
Where appropriate, the databases etc. which are used to illustrate this book
are available for download from www.penguinsoft.co.uk.
The files are in Access 2000 format (which is compatible with Access 2000 and
Access 2003): simply look in the folder with the appropriate name. Access
2003 was used for the screen shots.
Each Access file is tied to its chapter by name so, for example, the Access file
associated with Chapter 2 is called CHAP2.MDB. Occasionally a chapter war-
ranted more than one database file, so sometimes you will find names like
CHAP25A.MDB and CHAP25B.MDB.

Acknowledgements
Very grateful thanks go to Mary Whitehorn, a talented writer in her own
right and not unrelated to one of the authors. She put in so much work, both
proof-reading and actually writing sections, that she easily qualified as an-
other author. Only her innate modesty prevents her name appearing on the
cover.
I (Mark) also acknowledge a huge debt to Professor John Parker. He was my
PhD supervisor many years ago and is currently the Director of the Cam-
bridge Botanic Garden. Whatever communication skills I have acquired came
directly from sitting at the feet of a master of the art.

1 • Introduction

9

We don’t have problems…
If you find a bug (sorry, bookware anomaly) anywhere in this book, I would
be delighted if you would tell me by visiting www.penguinsoft.co.uk. where all
known problems (and fixes) will also be posted.

Outroduction
So, that’s the end of the introduction. I’d love to know how many people actu-
ally read it; perhaps Sir Henry is right. Either way, I hope that you get as
much pleasure from the elegance of the relational model as I have done and I
will be delighted if this book illuminates even a small section of it for you.

1 • Introduction

11

Part 1

A simple, single-table
database

2 • Introduction to Part 1

13

Chapter 2

Introduction to Part 1

The first database you ever build is likely to do something relatively simple,
such as keeping a list of your customers or friends. Happily, even a simple da-
tabase like this can be used to introduce the four most important components
of a database, namely:

 Tables
 Queries/Views
 Forms
 Reports

It is difficult to over-stress the importance of these four components and we
will start with a quick look at each.

Tables
Tables are the basic structures in which data is stored within a database. Think
of a table as the container in which the data sits and the other three compo-
nents as devices which manipulate the data contained in the table. A table that
contains information about your employees might look like the one shown be-
low. The name of the table (EMPLOYEES) is shown in upper-case.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002

EMPLOYEES

2 • Introduction to Part 1

14

If you do download the sample files (see CChapter 1) you’ll find this EMPLOYEES table
in CHAP2.MDB.

Queries/Views
Queries are questions that you can ask of the data in a table. If you wanted to
find all of your employees who were born after, say, 1970, you would use a
query. Queries are used frequently within databases because typically the
tables hold very large amounts of data and we often want to deal with, or
look at, just a subset of that data.
Below is the result of a query to find the employees who were born after 1970.

The results of queries that we use to illustrate this book are usually shown with
names; for example, in this case, it is EmployeesBornAfter1970, which is simply the
name of the query. The query can be found in the appropriate .MDB file, in this case
called CHAP2.MDB.
Views are very much like queries. Both are devices that are used to extract
information from the database. Essentially the difference between a view and
a query is simply its location. In a client-server database (such as SQL Server)
any query that is stored on the workstation is a query. The same query, stored
on the server (where it is accessible to lots of people) is typically called a view.
Since Access sits on your PC it becomes very difficult to say whether the
query is on a server or a workstation, so Access simply uses the term Query
and doesn’t bother with the term View.
In large measure you can take every sentence written about queries, substi-
tute the word “View” for the word “Query” and it still makes perfect sense.

Forms
Users need to gain access to the data in a database, so the database needs
some kind of user interface. Generally a complete user interface will consist
of a number of different components called forms. A form is a device which

EmployeeNo FirstName LastName DateOfBirth DateEmployed
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002

 EmployeesBornAfter1970

2 • Introduction to Part 1

15

allows you to look at and edit the data in a table, like the one below showing
information from a table of data about customers.

Some databases, such as Access, provide inbuilt tools for creating forms. Oth-
ers, like Oracle, provide a separate tool (Oracle Forms which is a component
of the Oracle Developer Suite) to build them. Forms can be produced as part
of applications or as web pages (web forms). We’ll drill into this later but for
now you can think of forms as the user-friendly front end of the database.
This form allows you to look at and edit the data in the table. In fact, you can
usually go directly to a table itself and perform both of these actions but typi-
cally they are accomplished via a form. A good question at this point is “Why
use a form?” and a simple (but true) answer is that forms can be made more
attractive and easier to use than tables. For more compelling reasons to use
forms, see Chapter 5 – Forms.

Reports
Reports are used to produce printed output from the table. If you want a list
of all of your customers’ names and addresses, you would use a report to roll
out just such a list from the printer.

2 • Introduction to Part 1

16

This report produces a printed list of information about employees, sorted by
last name.
Simple, isn’t it? And if you can get to grips with these four fundamental com-
ponents – tables, queries, forms and reports – you will have acquired a very
good handle on databases in general. Of course, there is more to them than
just their definitions, so in the next four chapters we’ll have at look at each in
greater detail.

3 • Tables

17

Chapter 3

Tables

Tables are containers for holding data which is similar in structure. If you col-
lected information about your employees, the data about each would be simi-
lar and would therefore make the contents of a perfectly satisfactory table.

This part is all about databases made up of a single table, so it may come as a bit of a
shock to find that the CHAP3.MDB (the Access file which holds the sample files used for
this chapter) has more than one table. However, this is simply because we use different
tables to illustrate different points.
On the other hand, you cannot put one or more carefully spotted train num-
bers and a list of your favorite books into the same table.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 2004
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2003
3 Cas Kade 01 May 1977 01 Apr 2004
4 Norma Lyzation 03 Apr 1966 01 Apr 2004
5 Juan Tomani 12 Apr 1966 01 Apr 2004

EMPLOYEES

3 • Tables

18

To do so would entirely miss the point that tables should contain data with
similar structure.

Rows & columns – records & fields
Tables consist of rows (horizontal) and columns (vertical). In the sensible
sample table (shown again below) each row contains the data about one em-
ployee. The table has five columns, each of which has a name.

Rows are also called records and columns are also called fields. In many cases
the terms are used interchangeably. If I was being pedantic I’d say that the
difference is that record and field are often used about the data:

“Well, I’m looking at Fred’s record on the screen now and he doesn’t
have an entry in the DOB field.”

whereas row and column are often used about the table:
“That table has 50,000,000 rows and 120 columns – it’s a monster!”

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 2312234 Steam Train Red and Black 3.45 to Bedford
7 The Egg-Shaped

Thing
10c Christopher Hodder-

Williams
Hard Back

8 34223 Diesel Black and Soot 2.17 to Seattle
9 The Mullenthorpe

Thing
$2.50 Christopher Hood Hard Back

 NONSENSIBLE

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002

 EMPLOYEES

3 • Tables

19

However, it isn’t quite as simple as that.
In some cases it isn’t clear whether we are really talking about the table or the
data. So a sentence like “If we run the query against that table we should get
about 50 records.” sounds just as appropriate as “If we run the query against
that table we should get about 50 rows.”
In addition the usage (in my experience) varies between communities of data-
base engine users. For example, Access users tend to favor record and field
whereas Oracle users favor row and column. In addition, row and column
are usually favored by people from either camp when they are discussing the
more formal aspects of databases (normalization, denormalization etc.).
And, just in case you still think this is simple, as discussed earlier there is a
third set of terms that are used, for example, when Codd and Date write
about the relational model.

In my opinion, people like Chris Date use the very formal terms for reasons
of precision – a tuple isn’t exactly the same as a row, neither is a relation ex-
actly the same as a table, although they are very nearly the same. Other peo-
ple seem to use them purely for reasons of obfuscation. (Bill added “Or elit-
ism, a very common malady”.)
You can see our problem. Which of these terms should we use in this book?
Standardising on one set would provide a great deal of consistency. On the
other hand, that doesn’t help you gain a feel for the way the terms are used in
practice. In the end we decided simply to use whichever term seemed appro-
priate to us for the context in which we were writing. We think this is ulti-
mately better but it does, absolutely 100%, guarantee that we will have been
inconsistent somewhere.

Numbers of rows and columns
In most databases, each table can be considered to be infinitely expandable in
terms of the number of rows it can contain and so no limit is set on the num-

Data terms Table structure terms Very formal terms

Table Table Relation

Record Row Tuple

Field Column Attribute
Number of records Number of rows Cardinality
Number of fields Number of columns Degree or Arity

3 • Tables

20

ber of (in this example) employees which can be accommodated in the table.
The same is not true for the number of columns which typically has some
limit. In some database engines this limit may be absolute (like 255 columns)
or it may be determined partially by the data types you choose (as it is in Ac-
cess). In any event it is usually more than enough for most purposes.

Field Names
It is a characteristic of all tables that each field must have a name (called the
‘field name’ or ‘column name’) and that each column name, within a given
table, must be unique. This is not unreasonable, since two fields in the EM-
PLOYEES table, both called FirstName, would be bound to cause confusion.
It should be clear that the EMPLOYEES table is designed to hold information
about employees. For a start, the name of the table (EMPLOYEES) tends to give
the game away but also the names on the tops of the columns (FirstName, Last-
Name, DateOfBirth etc.) clearly indicate that this is a table for storing informa-
tion about people rather than, say, items offered for sale.

Table structures
In a perfect world, the RDBMS would provide an infinite number of empty
tables, each one designed to hold a different category of information – one for
employees, one for customers, one for orders and so on. However, even if this
were possible, it still wouldn’t be much help, because different databases will
require different information to be stored in the same category of table. Sup-
pose that you and I are both setting up databases for our businesses and that
we both need a Customer table. Clearly we would have some fields in com-
mon (PhoneNumber) but you might, for example, be interested in providing
your customers with financial services and would need detailed information
about credit rating and so on. I, on the other hand, might want to sell antique
books for cash but provide a discount for members of the ABC (Antique Book
Club) and therefore need to store information about each customer’s mem-
bership status.
Access provides a set of ‘Wizards’ which let you choose the general class of
table that you want (say, EMPLOYEES) and then step you through the process of
making it. These are very helpful but it is impossible for the wizard to pro-
vide every possible variation of the EMPLOYEES table that everyone will need.
So Access also provides a means by which we can build our own tables from
scratch, like the one shown below, or modify the ones produced by the wiz-
ard.

3 • Tables

21

As a rule, once the structure of a table (in terms of the fields) is complete, it is
rarely changed. This certainly isn’t an absolute rule: I just make the point to
highlight the difference between records and fields. The former will inevita-
bly change as new information is added to, and subtracted from, the table;
the latter are generally more fixed for any given table.
Your first task in setting up a database is to design a table to hold your data.
In doing so you will have to specify the names of the fields that you think you
will need.
All tables and all fields have names. Access allows the use of UPPER-CASE and
lower-case characters in both table and field names. It also allows the use of spaces in
these names. Thus it is possible to call a table Part time Employees and a field Rate Of
Pay.
We have elected never to use spaces in field names for two reasons. The first is that it
should make the text in the book clearer. Spaces in object names produce problems
peculiar to writing about databases. For example, consider the text “... and obviously
add the appropriate data to constraint and check carefully...”. The field name in this
case might be ‘constraint’, ‘constraint and check’ or, at a pinch, ‘constraint and check
carefully’. The meaning might become clear if we saw more of the context but it is
intuitively clearer if both table and field names are always a single word.

3 • Tables

22

Secondly, while Access allows spaces in field names, other RDBMSs do not. If you
use spaces, you might be storing up problem for yourself in the future. Suppose, for
example, that you build an Access application for your company that turns out to be
wildly successful. Promotion quickly follows, with a place on the board and stock op-
tions: the world is your oyster. Then you are asked to upgrade the database to a client-
server system (see Part 3). If the client-server RDBMS favored by your company
doesn’t support spaces in field names, you suddenly have a major headache. Take our
advice and avoid spaces in field names.
We have also elected always to use UPPER-CASE for table names and the delight-
fully named CamelCaps for field names. Finally, if I need to refer to a specific field in
a specific table, I will always do so by separating the two names with a dot or point(.).
Thus:

EMPLOYEES.EmployeeNo
refers to the EmployeeNo field of the table called EMPLOYEES.
Incidentally, one of the reviewers of the book commented “CamelCaps are more accu-
rately known as BiCapitalization, but ‘CamelCaps’ is much more fun! Purely, for
information, did you know that random CaPitaLizaTioN is known as StudlyCaps?”
That finishes with the aside. Now, back to the records. (As another aside, this expres-
sion “Now, back to the records” is a rare example of a database pun. We need to treas-
ure it because there are so few of them.)

Building a table
So, tables have fields and fields have field names. However, if you elect to use
the ‘Design View’ you will find that you are asked for more than just the field
names. For each field you will be asked to choose the ‘type’ of data which the
field will hold (known as the ‘data type’) and the size of the data which will
be placed therein. We’ll have a look at what each of these terms means and
why it is usually to your advantage to choose wisely.

3 • Tables

23

Types of data
The most commonly used data types are:
Text Most characters found on the keyboard, including numbers;
 usually limited to 255 characters.
Memo Large blocks of text.
Number Numbers only, no text characters.
(or numeric)
Date/Time As the name suggests; dates, times or both.
Currency Essentially numeric with four decimal places and a currency
 symbol.
AutoNumber A number that is automatically incremented for each new record.
Yes/No For discrete information that falls neatly into two
 categories; like True/False, Yes/No, Up/Down.
OLE Object An object such as a Microsoft Excel spreadsheet, a
 Microsoft Word document or graphical information.
Hyperlink For storing URLs (Uniform Resource Locators)

This is how data types are selected during the design of a table in Access.

3 • Tables

24

Choosing the correct data type for a given field is usually easy. If you create a
field called FirstName, then Text is clearly likely to be the correct data type;
Currency would be a good choice for a field called Salary and so on. But why
do we have to tell the RDBMS what type of data is going into the table? Why
can’t it just store whatever we choose to put in as, indeed, some very simple
DBMSs will do? The answer is that defining the data type has four advan-
tages (in no particular order of importance). It can:

 allow more ‘meaningful’ operations to be performed upon the data
 exclude certain types of error
 make the storage of the data more efficient in terms of size
 make data recovery more rapid.

Meaningful operations
Suppose you want your EMPLOYEES table to store the date upon which each
employee started to work for your company. You decide to declare a field
called DateEmployed to store it. What data type would you choose? Date/Time
seems like a good choice but it is common to find that people new to
databases will choose the default data type which happens to be Text. Even
more surprisingly, this appears to work (at least initially) because a text field
will accept any alphanumeric character that you can find on the keyboard.
The following are all acceptable in a text field:

Penguin
ROSS
Sophie
45
Salt & Pepper
12+45%
12/4/1966

Note that the last one looks like a date. Since text fields will accept data which
looks like a date, why bother declaring the field type to be anything else? The
answer is that dates, as you have probably noticed, are horrendously com-
plex:

30 days hath September,
April, June and November,
All the rest hathn’t

3 • Tables

25

(or words to that effect).
The good news is that if you declare this field to be of type Date/Time, the
RDBMS will be able to perform what is known as ‘date arithmetic’. For exam-
ple, it should be able to tell you how long each employee has been with you
simply by subtracting the date stored in DateEmployed from the current date.
In addition, it should be able to give you the answer in days, months or years,
whichever temporal currency you happen to prefer.
You can see this in action below, where Access is calculating the number of
days for which an employee has been with the company, even allowing for
leap years.

Incidentally, note that we are using a form here to look at the data in the table.
It serves as an excellent illustration of exactly why forms are so useful. Tables
cannot manipulate the data that they contain, they are simply storage vessels.
Forms can do so and can also replace field names like DateOfBirth with text
containing spaces
Clearly this is only possible because the RDBMS ‘understands’ that a date like
‘12 April 1966’ is actually the twelfth day of the fourth month in 1966. It can
only assume that this is so because we have effectively told it by declaring the
field called DateOfBirth to be of type Date/Time.
As another example, consider telephone numbers. What sort of field type
should be used to store them? (Be warned: this is a trick question.) The obvi-
ous answer is to store them in a number field but that happens to be the

3 • Tables

26

wrong answer. Number data types treat the data they contain as numbers, so
they remove leading zeros, which catastrophically changes country codes like
001 to 1. In addition, they won’t tolerate spaces or parentheses in numbers,
which is also unfortunate. The net result is that you want to store, say:

001 234 123 4567

or

(001) 234 123 4567

but all you can store is:

12341234567

which isn’t the same thing at all.
The correct answer is to store telephone numbers in a text field where leading
zeros, spaces and parentheses are happily tolerated. This use of text fields for
telephone numbers isn’t as counter-intuitive as it might appear. Numbers are
values that we manipulate mathematically, and telephone numbers aren’t
numbers in that sense at all. When did you last calculate the average of your
friends’ phone numbers? Telephone numbers are actually identifiers which
happen to be numeric; in practice they could equally well be a string of text
characters.

Excluding certain errors
Given that the RDBMS will expect only dates to be entered into a Date/Time
type field, it will reject dates like:

34th April 2005
29th February 2003

Incidentally, you don’t have to type dates into the database as a mixture of
text and numbers such as ‘21 Feb 2003’. You can type them in as numbers and
you can set the expected format to be US or UK. Thus, if Windows is set for
UK format dates, then typing in 7/4/96 means the seventh of April. If it is set
for US format, then it is the fourth of July (and time for a party).

Making storage more efficient
Suppose you want a field to hold the number of offspring of each employee.

3 • Tables

27

The obvious choice is to make the data type ‘Number’. However, there are
several different sub-types of ‘Number’. You do not need to learn these off by
heart but just to give you an idea of the range, the most commonly used are:

[A byte can be thought of as a single unit of storage in a computer. Disk space
is usually measured in Megabytes (1 MByte = approximately 1 million Bytes)
or Gigabytes (1 GByte = approximately 1,000 Megabytes).]
One of the reviewers wrote “Is this really true?” next to the bit about “you can store
a number which is far greater than the number of atoms in the entire observable uni-
verse”. “Yes” is the short answer. Last time I looked into this (which was a while ago)
the estimate was 1x1073 atoms (1 with 73 zeros after it). Even if that estimate has
risen ten million-fold, that would still only be 1x1080, and a ‘double’ will store
1x10308. Of course, these numbers are stored without much precision, but they are
still mind-stretchingly vast.
Now, for a start, offspring are integers. Given a particularly obnoxious off-
spring you might attempt to claim responsibility for only a small part of it but
we don’t normally describe someone as having 0.1835 children. Secondly,
how many people do you know with more than 255 children? How many
people do you know with negative children? (This is not the same as asking,
“How many people do you know who are negative about their children?”) So
the correct numeric sub-type in this case will be Byte which stores positive
integers between zero and 255, or Integer if Byte is not available.

Sub type of Number Storage capacity and size
Byte Stores numbers from 0 to 255 (no decimals). Each occupies 1

byte.
Integer Stores numbers from -32,768 to 32,767 (no decimals). Each oc-

cupies 2 bytes.
Long Integer Stores numbers from -2,147,483,648 to 2,147,483,647 (no deci-

mals). Each occupies 4 bytes.
Single Big numbers. Numbers well into the billions and beyond. For the

technically minded, numbers with six digits of precision, from
approx. -3.4x1038 to +3.4x038. Each occupies 4 bytes.

Double Stores huge numbers, I mean really monstrous. In a double
data type you can store a number which is far greater than the
number of atoms in the entire observable universe. Since this
number must, by definition, exceed the number of employees or
customers you have, it should be big enough. For the technically
minded, numbers are stored with 10 digits of precision and
range from approx. -1.8x10308 to +1.8x10308 complete with deci-
mals. Each occupies 8 bytes.

3 • Tables

28

So, what major catastrophe occurs if you get it wrong and accept the default
Number data type which isn’t Byte or Integer? (Double was the default in
Access 2.0 but it’s Long Integer in the later versions.) The answer is ‘Nothing
too drastic really, unless you start to collects lots of data.’ (see Field size be-
low). However, since you are often unsure of exactly how much data you will
collect, it is always a good idea to try to take the long-term view.
a

Making data recall more rapid
As a general rule, if you make a field a Long Integer and then fill it with posi-
tive integers between 1 and 20, you are wasting space. A digit between 1 and
20 would fit in a Byte field and therefore take up only one byte of disk space.
However, the same number stored in a Long Integer field takes up four times
as much disk space. This has the effect of making the table larger than it
needs to be, which has the knock-on effect of slowing the database down
when it is queried because there is more of it to be processed. However, it is
important to keep a sense of proportion here.
Suppose you are building a table to hold a list of your friends. Popular as you
are, you never expect the table to contain more than 300 rows. In this case, it
really doesn’t matter if you use a Byte or Double data type for storing how
many children each friend has because neither size nor speed will ever be a
noticeable problem. Having said that, of course, there is always the little mat-
ter of pride. There is a certain satisfaction in getting it right. In addition, many
databases I have seen built for small companies have expanded beyond the
designer’s wildest dreams. So, on balance, even given a healthy sense of pro-
portion, I would always try to get it right first time.
First time? Yes, because Access will allow you to change a data type, even
after you have added data to the table. Exactly what happens to the data will
depend upon the change you make and sometimes a loss of information is
inevitable. For example, if you store data in a Double field, you can include
numbers with decimal components. If you subsequently change it to an Inte-
ger type, Access will keep the whole numbers and will round them depend-
ing upon the decimal component. Thus 4.4 becomes 4 while 5.5 becomes 6.
a

Field size
If you declare a field called LastName to be of type Text, you will also need to
tell Access how many characters that field can hold. This can be a bit of a
guessing game; what’s the longest last name you can think of? Marklyn?
Whitehorn? Weatherbottom? Zimmer Van Kyllon? Most RDBMSs need to
know this sort of information because the size of the field will affect storage

3 • Tables

29

space and retrieval speed. Suppose you decide to make the field 50 characters
long; this means that for every record added to the table, 50 bytes are set
aside to hold the person’s last name. If the longest last name you ever store is
26 characters long (Zimmermann der Grossenamen), then you are wasting 24
bytes per record. Since tables are stored on disk, you are now wasting 24
bytes of disk space per record. Given that you want to store records for, say
the population of Scotland (approximately 5 million souls), you will waste
120 MBytes of disk space by simply accepting a default value. If you make
similar mistakes for 10 fields, that multiplies up to over a Gigabyte.
Surprisingly, this waste of disk space isn’t too big a crime nowadays because
disk space has become so cheap. But there is another problem: the bigger a
table gets, the longer it takes to search. Choosing the wrong field size can con-
tribute to a database which runs like congealed porridge. Such databases are
generally unpopular with their users.
Excellent news for Access users is that ever since version 1.0, Access has been
intelligent enough to store only the actual characters that you enter into each
text field. Thus if you declare the text field to be 50 characters wide, but store
‘Penguin’ in the first record, this will only take up 7 bytes of disk space. In
fact, Access only asks you to decide how many characters that field can hold
so that you have control over the maximum number of characters which are
entered. However, most RDBMSs are less forgiving with text fields and will
waste space if you declare the size of the field unwisely.

General notes on table design

Think first
If you want a new table you shouldn’t really sit down at the computer with-
out doing some thinking first. Creating a table (and indeed a database) re-
quires two fundamentally different stages which we can call ‘Structure Defi-
nition’ and ‘Implementation’. (These are not formally recognized terms, they
just happen to be useful here.)
Structure definition essentially means deciding which fields will be required,
what information will go into them and how large each one should be. This is
not a process which involves a computer; indeed it should be carried out as
far away from a computer as possible.
Implementation means constructing a computerized representation of the
design.

3 • Tables

30

It could be imagined that because the first stage just takes pencil, paper and
common sense, it is therefore a matter of little consequence. On the other
hand, because the second step involves a computer and an RDBMS, it could
be seen as more difficult.
In fact, the converse is true; design is difficult and implementation is easy.
Having said that, design is mostly common sense (it just depends on how
sensible you are). One golden rule of design is not to ask the question:

“What information do I want to put into the table?”
Instead you should ask:

“What information do I want to get out of the table?”
You are, after all, only building the database so that information can be ex-
tracted. Having decided what questions you are likely to ask of your table,
you can then work backwards and decide what information needs to be put
in and from that you can deduce the structure.
Again, an example helps make this clear. You need to be able to send mail to
certain target groups of Influential People (IPs). (Make a note: you will need
fields for names and others for addresses.) IPs are often fussy about their ti-
tles (note: separate field for title). You will need to target them based on their
income group (field for income), number of children (integer field) and politi-
cal party (text field). You want to include a direct reference to their spouse in
the letter (text field for spouse’s name) and so on.
If all this sounds far too obvious, believe me it isn’t. I have seen several tables
which have been stuffed with useless information, so well stuffed that the
entire database was running like treacle, which was why I had been asked to
take a look. The information wasn’t there because anyone was going to use it
but was there because it had been easy to collect. In two cases, the informa-
tion had been available electronically so it didn’t even have to be typed in.
Ease of collection is not, on its own, a good reason for storing data.

Context
Another good rule is to think about the data that you will collect in the par-
ticular context in which it will be collected. The size of a field needed to hold
people’s last names will depend upon the ethnic group to which they belong.

PC or not PC? That is the question
Try to avoid field names like ChristianName; not everyone has one because not
everyone is a Christian. I would hate this to sound like a sop to the great god
‘Political Correctness’ but why offend people when it is easy, with a little

3 • Tables

31

thought, to avoid doing so?
Hard-line political correctness makes table design a minefield in which even the wari-
est database designer can be caught. As one of the reviewers of an early draft of this
book pointed out:
“Fine to abandon ‘Christian’ names because of cultural diversity, but not then
to say ‘First’ or ‘Last’ name. ‘Tsiao Ping’ is not Mr. Deng’s Christian name, but
it is not his first name either; it is his given name (and ‘Deng’ is his surname or
family name). Actually, you can’t win: ‘Magnusson’ isn’t Magnus’s family
name; it’s his patronymic.”
I suppose that we can take comfort in the fact that whatever we choose will
be wrong, so at least we know where we are from the start.

Controlling data entry
Access allows you to set up filters which control the input of data into fields.
It is worth mentioning here because you can use field types to help ensure
that valid data ends up in the table.
Suppose you wish to collect information relating to a person’s gender. You
could set up a text field and expect the users of the database to type in ‘Male’
or ‘Female’ in response to the question ‘Sex?’
Experience suggests that if male students are allowed to enter the data for
themselves, about 5% will answer “Yes” and a further 10% will respond “Yes
please!” While this data tells you that about two-thirds of the students with a
sense of humor are also polite, it doesn’t help you to collect the information
you want.
There are several alternatives. You could set up the field to be of type Yes/No
and entitle the field ‘Female?’ (or ‘Male?’ if you like). The system would then
only allow the response ‘Yes’ or ‘No’. By doing this you are making use of the
data type to control data entry.
Another (and possibly better) way is to make use of a more specific control
mechanism that Access allows during the construction of a table. You can
choose a data type, such as text, set it to a specific size, say 6, and then specify
that only the input “Male” or “Female” is acceptable for that field.
Of course, neither system will prevent any individual student from claiming
to be the wrong sex (either from perversity or feeble-mindedness) but con-
trolling such factors lies outside the remit of even the most advanced data-
base.
Access allows the control of data input to the table to be set up in a very ver-
satile manner. You can, for example, set up a numeric field which will accept

3 • Tables

32

values only between 1.34233 and 6.4453. As another example, you can set a
field called Title to accept only the input ‘Mr.’, ‘Mrs.’, ‘Miss’, ‘Ms’, ‘Dr.’ or
‘Prof.’.
One of the reviewers added “I wouldn’t, though. I once tried to enumerate them all
(‘Sir’, ‘Lord’, etc.) Ouch!”
True, there must be hundreds. However, have a look at the validation rule in
the lower part of the screen below to see how it can be done.

You can also use forms as a further level of control. This issue is discussed
further in Chapter 5 – Forms and in considerably more detail in Chapter 16 –
Integrity.

Field names
Most of the early RDBMSs put significant restrictions on the size of field
names and the characters they could contain (such as eight letters or fewer,
no lower-case letters and no spaces). In turn this has given rise to field names
like FNAME, LNAME, CUST# and so on. I hate these because they are a barrier to

3 • Tables

33

understanding, and happily many of the modern RDBMSs remove these re-
strictions. Access allows field names with longer names like Customer Num-
ber. For reasons discussed above I would avoid spaces, but using more than
eight characters can often make for more readable field names. Throughout
this book I have carefully ignored my own advice, using as few letters as I
can while still retaining some readability. In my defense I’ll claim that when
building databases for the ‘real world’ I do use longer field names. However,
the databases used here are examples for a book. The printed page is an all
too narrow medium for displaying tables, so I have tried to work as best I can
within that rather odd restriction.

Splitting names, addresses etc.
It is tempting, but usually inadvisable, to store data in a single field if it can
be logically subdivided. For example, if you store names like this:

all will be well until someone asks you to list all of the people in the table al-
phabetically by surname. In fact, with much effort and gnashing of teeth, it is
possible to do this, but why make life difficult for yourself? If you store the
same data in three fields like this:

you can then simply sort on the contents of the third field:

Name
Prof. John Parker
Dr. Brian Featherstone
Miss Julie Arberlington
Mr. Mike Barham

Title FirstName LastName
Prof. John Parker
Dr. Brian Featherstone
Miss Julie Arberlington
Mr. Mike Barham

Title FirstName LastName
Miss Julie Arberlington
Mr. Mike Barham
Dr. Brian Featherstone
Prof. John Parker

3 • Tables

34

Subdividing data like this also makes it much easier to, say, extract all the
Professors from the list.
The rule for subdividing data is quite simple. If you have data which can be
logically split into sections, give serious consideration to doing so. If you can
see any future need at all to manipulate the data via one of its possible subdi-
visions, it is almost essential to split it up into different fields.
Addresses are another good case in point. It is possible to argue that an ad-
dress is usually used as a single unit. However, once the data is in a database,
you are likely to be asked to perform operations such as finding all of the cus-
tomers in Boston. This will be much easier if the address is split into separate
fields, one of which is called something like City/Town. And, of course, post-
codes and zip codes contain a plethora of information so long as you can get
at it. Always store them in their own field.

Don’t store redundant information
If, in an order table, you store CostOfItem and NumberOfItems, don’t store the
total cost since this is already inherently stored as the product of the other
two fields. If we ever need the information we can calculate it as CostOfItem x
NoOfItems (see Chapter 5 – Forms). Storing the product of these two in the
table not only wastes space, it produces updating problems. Suppose you en-
ter a record and complete the three fields – CostOfItem, NumberOfItems and
TotalCost. Then your customer alters the order, doubling the number of items.
You might update the number of items but forget to alter the value in the
TotalCost field as has happened in the sample table shown below.

(To save you working it out, the record for Mark buying shrimps is incorrect.
He originally ordered 75 which gives the price of $242.25 but later altered the

OrderID Customer Item CostOfItem NoOfItems TotalCost
1 Holly Haddock $3.45 23 $79.35
2 Bill Herring $2.56 45 $115.20
3 Jane Haddock $3.45 43 $148.35
4 Henry Salmon $5.67 34 $192.78
5 Mark Shrimps $3.23 100 $242.25
6 Mary Prawns $3.45 34 $117.30
7 Bill Herring $2.56 56 $143.36
8 Holly Haddock $3.75 45 $168.75

ORDERS

3 • Tables

35

order to 100. Since the TotalCost field wasn’t updated to $323.00, he got a bar-
gain, which means our company lost money.)
I have assumed that the price of fish varies with time, so it is perfectly reasonable for
haddock to vary in price from one order to another.
In theory there are solutions to this problem which still allow you to store the
redundant data. You could, for example, get the RDBMS to automatically re-
calculate the TotalCost whenever the values in either of the other two fields are
altered. Actually ensuring that the recalculation takes place under all condi-
tions takes time and effort. Experience has shown that in most cases it is far
simpler and safer not to store redundant information.

Base tables – not defined here
Since this chapter is about tables, it feels instinctively like the right place to
define a concept that you will probably need, that of a ‘base’ table. The prob-
lem is that base tables only really make sense when compared and contrasted
with, well, tables which aren’t base tables. All of the tables we have covered so
far are base tables, so the definition is going to be cumbersome until we reach
the other sort of table (which happens to appear in Chapter 4 – Que-
ries/Views). So I’ll salve my conscience by defining a base table as exactly the
sort of table that you have met so far, namely those which you create and
within which you store the data for your database. We can improve on that
definition later.

4 • Queries/Views

36

Chapter 4

Queries/Views

Creating a database and then entering all the data takes time and effort. Sim-
ply creating a database is not an end in itself; unless you are one of those sad
people (like me) who actually enjoys that sort of thing, there has to be some
gain for the pain. That gain lies in the easy access to the data provided by an
electronic database.

Queries usually find subsets of the data
By far the most common operation performed on the data in a table is to sub-
set it.

This operation can be done by field,

JustNames
FirstName LastName
Manny Tomanny
Rosanne Kolumn
Cas Kade
Norma Lyzation
Juan Tomani

EmployeeNo FirstName LastName DateOfBirth DateEmployed

1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002

EMPLOYEES

4 • Queries/Views

37

by record,

or both.

Operations which extract data from a table in this way are called queries.
Given a table of five columns and five rows, there is no need to use a query;
you can find the required information by eye. Given 50 columns and 100,000
rows your eye may need a little help. These subsetting operations rarely stem
from a desire to play with the data per se; instead they arise because people
ask questions. Subsetting by field, for example, answers a question which
might be “What are the names of my employees?” Subsetting by record an-
swers questions such as “What information is available about my employees
called Norma?” Subsetting by both might have been produced to answer the
question “What are the full names of all of my employees called Norma?”

Queries, answer tables and base tables finally defined properly
and closure mentioned briefly
It is important not to become confused between a query and the answer that
it produces.
A query is simply a question which can be asked of the data in a table. This
query can be expressed in several ways (see the paragraphs on graphical que-
rying tools and SQL at the end of this chapter) and it can even be expressed in
human language. In this context, the method of expression is immaterial; a
query is a question which you ask about the data in a table. Having asked
that question, you expect an answer and the answer appears in a tabular lay-
out called an answer table. An answer table will have columns and rows and
it will look and feel like a table. Note that the last sentence sounds dictatorial
“It will have columns and rows, it will look and feel like a table”; this is be-
cause one of the central tenets of relational database theory, known as closure,
is that the result of a query will always be a table (see, for example, the sub-

JustNorma
EmployeeNo FirstName LastName DateOfBirth DateEmployed

4 Norma Lyzation 03 Apr 1966 01 Apr 2002

JustNorma’sName
FirstName LastName
Norma Lyzation

4 • Queries/Views

38

setting examples shown above). This principle is very important but it is eas-
ier to explain why it is so important when we are dealing with multiple
tables, so I’ll leave more detailed discussions until Part 2.
Answer tables are such an important part of a database that it becomes essen-
tial to be able to distinguish them from the original tables. These original
tables can be, and often are, referred to as base tables. The screen shots below
illustrate the relationship, reading from bottom to top, between a base table, a
query and an answer table.

4 • Queries/Views

39

As we have seen above, base tables have certain characteristics, not the least
of which is that the data they contain can be edited. The same should be true
of the answer tables which arise from a query; the data you see in the answer
table should be editable. This means you should be able to look at an answer
table on screen and edit the data you see there. Those edits should ‘pass
through’ the answer table and actually alter the data in the base table from
which the data originally came.
I say ‘should be’ editable, because they often are. However, there are two
main reasons why you may come across answer tables which are not edit-
able.
The first is that not every DBMS implements this highly useful feature, a fail-
ure which, incidentally, excludes them from being true relational DBMSs (see
Chapter 24). Access, you will be delighted to learn, supports this facility.
The second reason is that, under certain circumstances, allowing you to edit
the data displayed in an answer table is, as we database professionals say,
“incompatible with preserving the integrity of the data.”
This situation can arise, for example, when certain types of query draw data
from multiple tables or when a query summarizes data. Under these circum-
stances the RDBMS should not allow you to edit the data in an answer table.
For example, we have already seen a table of information about employees. It
stores the employees’ dates of birth and the dates upon which they were em-
ployed. From these two pieces of information, it is clearly possible to work
out how old each person was in years when employed and we can build a
query to do this.
The answer table looks like this:

This answer table summarizes data and therefore parts should not be edit-
able.
In this example, AgeWhenEmployed is being calculated as the integer value of the
number of days between the dates divided by 365.25. I know this will very occasion-
ally give the wrong answer, but then dates are notoriously tricky anyway…

FirstName LastName DateOfBirth DateEmployed AgeWhenEmployed
Manny Tomanny 12 Apr 1966 01 May 1999 33
Rosanne Kolumn 21 Mar 1977 01 Jan 2000 22
Cas Kade 01 May 1977 01 Apr 2002 24
Norma Lyzation 03 Apr 1966 01 Apr 2002 35
Juan Tomani 12 Apr 1966 01 Apr 2002 35

AgeWhenEmployed

4 • Queries/Views

40

The data in the first four fields comes directly from the base table EMPLOYEES
and logically can be edited in the answer table above. The data in the fifth
field, AgeWhenEmployed, is calculated and therefore cannot be edited. If this
seems strange, ask yourself this question: “If we alter the value in the first re-
cord to read 35 instead of 33, which of the two date fields in the underlying
base table should be altered to make the calculation yield 35?” The RDBMS
cannot make this sort of decision, so the field is uneditable.
However, assuming that a given query is editable (both in theory and prac-
tice), I stress again that the actual changes you make to the data will be fed
back to the underlying base tables. In other words, despite the fact that an-
swer tables look like distinct entities on screen, in practice it is perhaps more
accurate to think of them as windows onto the original base table. In fact, the
name ‘View’, used for queries in a client-server database, gives a better flavor
of how they behave.
There is another reason for stressing the fundamental difference between a
query (which is, in essence, a question) and the answer table that a given
query generates. Suppose you create a query, store it and use it on more than
one occasion. Would you expect it to produce the same answer table every
time it is run?
If the data in the base table is the same, the answer table will be identical. But
if the data in the base table has changed, the data in the answer table may
also have changed. A little thought shows that we can use this very much to
our advantage.
Suppose you build a query which looks at the data in the table shown below

and summarizes the total amount spent on each product.

Time passes and more orders arrive.

OrderID Customer Item CostOfItem NoOfItems
1 Holly Haddock $3.45 23
2 Bill Herring $2.56 45
3 Jane Haddock $3.45 43

ORDERSFEW

Item Total
Haddock $227.70
Herring $115.20

TotalSalesForEachProduct-ORDERSFEW

4 • Queries/Views

41

When the same query is run again, it generates a different answer table which
contains the up-to-date information.

In the sample database these answer tables are actually produced by two queries. In
fact, the two queries are effectively identical; they are just looking at two separate ta-
bles. This is to save you the effort of typing in the extra records. If you want to be sure
I’m not fooling you, just type the extra records into the table called ORDERSFEW and
re-run the appropriate query.
This separation of the query from the answer is wonderfully useful and many
queries are used over and over again at different times. And if you ever need
to take a snapshot of the data at a particular time, you can always get the
query to generate a separate, new table which is written to disk under a dif-
ferent name, (making it, in effect, a base table) thus preserving the data for
future reference.
One of the reviewers added “It might be worth saying that the table will no longer be
an answer table in the sense that you can’t update through it. However, you can still
update the data it contains – including the fields that you couldn’t update through
before.”

ORDERSMANY
OrderID Customer Item CostOfItem NoOfItems
1 Holly Haddock $3.45 23
2 Bill Herring $2.56 45
3 Jane Haddock $3.45 43
4 Henry Salmon $5.67 34
5 Mark Shrimps $3.23 100
6 Mary Prawns $3.45 34
7 Bill Herring $2.56 56
8 Holly Haddock $3.75 45

Item Total
Haddock $396.45
Herring $258.56
Prawns $117.30
Salmon $192.78
Shrimps $323.00

TotalSalesForEachProduct-ORDERSMANY

4 • Queries/Views

42

Summarizing data
At their most basic, queries extract a subset of the data in a table but they can
do much more. It is perfectly possible to use a query not only to extract a sub-
set of the data but also to perform some mathematical manipulation upon it.
In the case of the table below the manipulation involves dates but given nu-
merical data many other mathematical operations are possible (averages,
standard deviations, variances, minimum and/or maximum values etc).

Other useful queries
And it just gets better and better. Apart from summarizing data and incorpo-
rating mathematical operations, they can be used to perform many other
types of manipulation.

Update
Queries can be used to update the existing data in a table. For example, if you
have a table of items for sale and you want to increase all of the prices by
10%, you can use an update query to do the job. You can be more selective
and update the price by 10% only if the item costs more than $2.45.

Append
Queries can be created which will locate specific data in one table (find the
names of the sales people who have exceeded this year’s sales quotas) and
add that data to another table (one which holds the names of everyone who is
going on the company outing).

Delete
Queries can also be created which will locate specific records in one table

FirstName LastName DateOfBirth DateEmployed AgeWhenEmployed
Manny Tomanny 12 Apr 1966 01 May 1999 33
Rosanne Kolumn 21 Mar 1977 01 Jan 2000 22
Cas Kade 01 May 1977 01 Apr 2002 24
Norma Lyzation 03 Apr 1966 01 Apr 2002 35
Juan Tomani 12 Apr 1966 01 Apr 2002 35

AgeWhenEmployed

4 • Queries/Views

43

(find the names of the sales people who have not exceeded this year’s sales
quotas) and delete those records from the table.
OK, perhaps this example is a bit brutal, but you get the idea.

Graphical querying tools
A query is a question you ask of a table and that question can be expressed in
a variety of ways. It can be asked in a human language such as English: “Give
me the phone numbers of all the customers who live in Dundee” or mangled
French “Donnez-moi le phone number de tout les customers qui restent en
Dundee.” Work is proceeding on trying to get RDBMSs to understanding
queries expressed in human languages. For example, SQL Server has a fea-
ture called English Query that can do a reasonable job of understanding some
queries expressed in the English language.
However, we are still a long way from an RDBMS that can understand the
full and rich ways that we humans choose to express questions. Until that
day is reached, we need to use more formal ways of expressing questions to
an RDBMS.
In order to make the process of querying a database more accessible to the
majority of users, RDBMSs typically have graphical querying tools. The one
supplied with Access looks like this:

4 • Queries/Views

44

SQL and Views
Graphical querying tools are excellent, yet in the world of databases you will
constantly hear people talking about SQL (Structured Query Language). SQL
is a text-based querying system which takes slightly longer to learn and is
less intuitive to use than a GUI-based querying system. Here is a sample:

SELECT EMPLOYEES.FirstName, EMPLOYEES.LastName
FROM EMPLOYEES;

So why would anyone bother with SQL? Well, SQL is a standard, meaning
that many RDBMSs use it. In addition, it is more versatile than graphical que-
rying tools: some complex queries which can be expressed in SQL cannot be
expressed using a graphical tool.
If you are new to databases, I’d give SQL a miss for the moment. However,
once you begin to get used to querying data, SQL is a subject which well re-
pays some study. Those who feel the need are directed to Chapter 29.

5 • Forms

45

Chapter 5

Forms

Data resides in the tables, but a database is more than simply data. It also in-
cludes components that are used as tools to look at, enter, delete and manipu-
late that data. Those components are called forms.
Below is, as you’ll recognize, a table of data.

Once you have defined a table, you can start putting data into it. Tables are
usually represented on screen in a manner similar to that shown above, one
row for each record and one column for each field. However, it is important
not to lose sight of the fact that this ‘table view’ of the data is simply one way
of representing the data. Your data is actually stored in a highly abstract way
as a series of magnetic impressions on a disk and can be represented on screen
in a whole variety of ways. In practice, data isn’t usually entered directly into
the kind of table representation shown above, although this is possible. Almost
all data entry, editing and deleting operations are carried out via forms.
This is a form based on the table illustrated above.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002

EMPLOYEES

5 • Forms

46

You can think of forms as being screens or filters which sit between the tables
of data and the users of the database.
There is nothing intrinsically wicked about entering data directly into a table
but forms are usually employed simply because human beings often prefer to
be able to see each record in isolation rather than occupying a row on the
screen alongside many other records. The type of presentation shown above
is known as a form view of the data. Access has a Form designing section
where you can build forms

5 • Forms

47

and it also has a Form Wizard that will design and build a form for you; all
you have to give it is the table. In fact, the form shown above was constructed
by the wizard.
As you can see, a basic form has one area for every field in the table. It is
worth noting at this point that these areas on the form are not the fields them-
selves; rather, they are areas which allow you to view and (usually) edit the
data in a field. In Access these areas on forms are known as ‘text boxes’.

Typically a form shows one record on screen at a time and allows you to
move between the text boxes by using the Tab key and to move between
records with the PgUp and PgDn keys.
At their most basic, forms are simply devices for making it easier for people
to interact with the table. After all, as discussed in the previous chapter, the
restrictions of some RDBMSs can force field names to be rather cryptic. Care
to guess what should be placed in a field called PatMass? A form allows you
to place descriptive text beside a text box, so instead of having to enter data
into field called PatMass, you can enter it into a text box labeled ‘Patient’s
mass in kilograms’.
Even used in this very simple way, forms justify their existence by humanizing
the database and the importance of this cannot be over emphasized: people
still find computers intimidating, let alone databases. The easier the process of

5 • Forms

48

interacting with databases can be made the more effectively the database can
be used. For example, it is often possible to use forms to make the interface to
the database resemble the existing paper-based systems that the database is
replacing.
Forms have many features which help towards this end. Perhaps the best
way to understand how these help is to look at several in isolation and then
see how they can be used together.

Multiple forms per table
The table is the repository of the actual data and the form is simply a
‘window’ onto that data. There is therefore nothing to stop you from creating
more than one form based on a single table; each form can be used to give a
different view of the same data.

5 • Forms

49

Text boxes can be made read only
Remembering that text boxes are not the fields themselves, it is possible to
alter the properties of a text box so that, for example, they become read-only;
this means they will show the data in a given field but will not allow the user
to change it. Combine this with the idea that you can have multiple forms per
table and it becomes possible to have two very different forms. One could be
for data entry, the other for simply viewing a subset of the information in the
table.

Text boxes don’t have to present data from just one field
As discussed in the previous chapter, it is excellent practice to ensure that you
don’t store several discrete pieces of data in the same field. For example, sup-
pose you store names in two (or more) fields:

Given this table and a form for data entry, you would have to present the user
with two different text boxes, appropriately labeled so that the correct infor-
mation was placed in the correct place. If you didn’t, users might start enter-
ing the last name into the FirstName field.
However, suppose that you are using a form solely for viewing the data. There
is then no need to treat these items of data as separate entities and they can be
joined in one text box.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumn 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002

EMPLOYEES

5 • Forms

50

Note that this kind of manipulation doesn’t affect the integrity of the data in
any way and is worth doing because it makes life easier for the user of the
database.
The example above is simply ‘adding’ (or concatenating) two text fields. It is
equally easy to perform more complex mathematical manipulations on nu-
merical fields. Again, as discussed in the previous chapter, it is not desirable
to store information which can be calculated from data in existing fields.
Clearly, since forms are the preferred way of looking at the data, they are also
places for synthesizing the more complex form of the data.

You can have a text box which is labeled ‘Total Cost’ and which displays the
result of multiplying the values in CostOfItem and NumberOfItems. Unlike in
the last chapter, there is no corresponding field called TotalCost in the ORDERS
table.

The text box simply provides additional useful information for users of the
form. If, as implied earlier, users of the database always interact with the ta-
ble via a form, as far as they are concerned the Total Cost of the invoice is al-
ways visible. And if they alter either of the original values, the Total Cost text
box will automatically update, precisely because it is solely dependent upon
the other two.

OrderID Customer Item CostOfItem NoOfItems
1 Holly Haddock $3.45 23
2 Bill Herring $2.56 45
3 Jane Haddock $3.45 43
4 Henry Salmon $5.67 34
5 Mark Shrimps $3.23 100
6 Mary Prawns $3.45 34
7 Bill Herring $2.56 56
8 Holly Haddock $3.75 45

ORDERS

5 • Forms

51

It isn’t necessary for each field in a table to appear on the form
Since a form is just a way of looking at the data in the table, it isn’t necessary
for every field in the table to appear on a given form. This is more significant
than it first appears; see the summary at the end of this chapter.

Controlling data entry
As outlined in the previous chapter, choosing the correct data type for a field
can help to ensure that the correct data is placed therein. In addition, it is pos-
sible to control data entry more closely at the table level, again described in
the previous chapter. It is also possible to apply the same sort of control at the
form level but as a general rule it should be applied at the table level. Why?
Well, as has just been discussed, you can have multiple forms which are
based on a single table. If you have a data entry rule that is crucial and you
apply it at the form level, what will happen if you create a new form and for-
get to apply the rule there? Or what happens if you pass the database on to
someone else and they don’t know about the rule and create a new form? In
both cases, there is now a strong possibility that corrupt/incorrect data will be
allowed into your table, which has to be bad news. If you have a good reason
for applying control at the form level, then clearly that is the best place. Oth-
erwise, apply it at the table level. See Chapter 16 in Part 2 for more details.

Use of forms can be controlled
RDBMSs like Access allow you to control, via passwords if necessary, the ac-
cess that any particular user has to the components of the database (tables,
forms, queries, reports etc). In databases of any complexity it is common to
forbid users direct access to the tables and to restrict their access to specific
forms. Thus one group of users may be given access to one set of forms and
another group may have access to a different set.

Forms can be web pages
Forms can also be created that are essentially web pages – or you can think of
it the other way around: web pages can now act as forms. If your database is
destined for use from the internet or a company-wide intranet, users can ac-

5 • Forms

52

cess the data and perform all the usual form-based functions from their
browser. They can browse, search, add records and edit them, just as is possi-
ble from a form within a database application.
The means of generating web pages will differ between RDBMSs. Within Ac-
cess, for instance, you can build data access pages, though these are designed
primarily for use over an intranet. In these web-driven days, however, no
matter what RDBMS you use, there will be some way of creating web pages
to access your database. So wherever you see references in this book to a
form, you can with equanimity substitute the words ‘web page’.

Summary
Forms are devices which allow users to see the data in a table, and it’s
possible to create one or more forms per table.
Text boxes can be placed on a form which show the data from one field,
or which combine and manipulate the data from more than one field.
Not all fields have to be represented on a form and text boxes can be
made read-only.
Finally, the access that a user has to the set of forms can be controlled.

Given this level of flexibility, forms become quite remarkable tools. Imagine
that you have a table which stores information about your employees. It con-
tains some data that is generally available (name, address, phone number)
and some which is confidential (salary, medical history, criminal record).
Clearly it is unacceptable to give all of your employees direct access to this
table. Nevertheless different people in different departments need access to
different subsets of the data that it contains.
Three of the forms that you might consider building are:

a read-only form designed to help employees locate and contact each
other; this form is freely accessible. It shows only the individual’s name
(concatenated into a single text box), department, extension number
and email address.
one which is only available to the medical department and shows the
name (again concatenated), department and medical history. Only the
last field is editable and access to the form is controlled using a pass-
word known only to the medical department.
one which shows the name (as two separate fields), address, home

5 • Forms

53

phone number, department and extension in editable text boxes . It is
available to the personnel department for entering new records and
editing existing ones.

The manner in which you set up these forms and the access that you allow
different people to the data in the table is a matter for discussion within your
company. The important point is that forms are the tools which can control
access in this way.

5 • Forms

54

Chapter 6

Reports

Reports are rather like queries in that they can be used to summarize the in-
formation in a database. One difference is that reports usually produce
printed output, or produce web-based output that can be printed as required.
Suppose that, at the end of every month, you need to produce a list of all in-
voices issued in that month, together with their individual values and a total.
The best method is to use a report.
You need the invoices grouped by product with subtotals? Hey, no problem,
use a report.
The sad truth is that the full power of reports cannot be demonstrated when
they are used with single tables of data. Fear not: they will make more sense
when we get on to using multiple tables. However, just to give you an idea of
a simple one, here is a report which totals the numbers of items ordered by
different customers.

5 • Forms

55

The report above is based on the data shown below.

OrderID Customer Item CostOfItem NoOfItems
1 Holly Haddock $3.45 23
2 Bill Herring $2.56 45
3 Jane Haddock $3.45 43
4 Henry Salmon $5.67 34
5 Mark Shrimps $3.23 100
6 Mary Prawns $3.45 34
7 Bill Herring $2.56 56
8 Holly Haddock $3.75 45

ORDERSMANY

6 • Reports

7 • Summary of Part 1

56

Chapter 7

Summary of Part 1

To summarize the basic components of a database:
A base table is a repository for data.
Queries/views are used to extract, subset and summarize data from the
table and to update the table. Access doesn’t distinguish between que-
ries and views, so you only need to know about queries.
Forms are devices for viewing and entering data into the table.
Reports are used to print out some or all of the data in the table.

Tables, forms, reports and queries are the core components of a database. So
far I have described each in isolation. However, when they are used together,
they display a wonderful synergy. For example, as described above, a query
is a storable question, the output from which is a table. Forms are based on
tables, thus a form can be based on a query. Reports are based on tables, so
they too can be based on a query. This is a really important point so it is
worth repeating. Both forms and reports can be based upon queries.
Suppose you have a table that stores all of the orders that have come in from
your customers. If you create a query that extracts only those orders which
remain unpaid, you can then base a form on that query. Whenever you tell
the software that you want to use the form, it will automatically run the
query, extract the relevant information and display it in the form. A simple
database constructed in this way is illustrated below.

7 • Summary of Part 1

57

7 • Summary of Part 1

58

Part of the reason for building databases is to simplify the interface that the
user encounters. Forms can be easy to use and understand, so they can be
implemented as the sole way in which the user interacts with the data. To add
a new order users choose the NewOrders form; to see how much money is
currently outstanding, they select the form which displays this information
and so on. Indeed, forms can be constructed whose sole function is to allow
access to other forms. The one shown below simply provides a series of but-
tons which, when pressed, lead to other forms or cause reports to be gener-
ated.

This part of the book has looked at databases that are built around single ta-
bles of data. In practice, databases are often best built around multiple tables.
The next part explains why multiple tables are such a good idea and describes
the mechanisms that are used to make their use as painless as possible.

7 • Summary of Part 1

59

Part 2

A multi-table,
single-user database

9 • Serious problems with single tables

61

Chapter 8

Introduction to Part 2

So far we have confined ourselves to databases based upon a single table of
data. These are great for learning about databases and occasionally the data
you meet in the real world will actually fit neatly into just one table. For exam-
ple, I once built a single-table database for SHARP (Scottish Heart and Arterial
disease Risk Prevention).
Distressingly, Scotland remains one of the world leaders in the league table of
premature deaths from cardiovascular disease. SHARP is a charity that aims to
make people aware of both the problem and of possible remedies. From a base
in a traveling bus, SHARP staff used to visit sites (factories, schools etc.) and
assess individuals from the community for their risk of heart disease. The data
collected consisted of 109 different pieces of information about each person.
Since the data collected for each patient was unique, there was no advantage in
using multiple tables. I built SHARP’s database and it was a rare case, the only
time I have ever used over 100 columns in a table and the only time I have
built a single-table database (apart from simple address lists). So single-table
databases do exist but experience suggests that almost all databases actually
need multiple tables of data.
A perfectly reasonable question at this point is “Why?” After all, single tables
are easy to manage and often feel intuitively right. We have lots of orders, we
want to store information about each order, why can’t we just use a single OR-
DERS table? The Victorian clerks beloved of Dickens’ novels put such orders
into a ledger book which was essentially a single table of data.
What I have to do now is to convince you that single tables produce problems
in computerized databases. Then I have to convince you that the extra effort
involved in learning how to construct and maintain multiple-table databases is
worthwhile. To put that more simply, I have to convince you that the gain is
worth the pain. The next two chapters are designed to do just that.
After absorbing those two chapters, hopefully, you’ll be convinced and will be
prepared to read the rest of the part which tells you what you need to know in
order to make multiple tables work together effectively.

9 • Serious problems with single tables

62

Chapter 9

Serious problems
with single tables

Suppose we decide, despite advice to the contrary, that we are going to use
one and only one table in the database that we are building for our company.
In that table we store the details of the orders that we process. These details
include item sold, price, customer information, date of sale etc.. If we ran a
bonus incentive scheme, we would also need to include the name of the em-
ployee who made the sale. We also need to store information about our em-
ployees – name, date of birth, date first employed, salary, address, home tele-
phone number etc.. Since we only have one table, then that is the only place
where we can put this additional information.

We would also need to store the same sorts of details about the customers but
I have left much of the detail out of the example so that the table doesn’t
spread right across the page and disappear off the edge.
However, even with its unrealistically small set of columns, this table can
technically be described as a ‘dog’s breakfast’ and for several reasons.

OrderNo FirstName LastName DateOfBirth DateEmployed Customer Supplier Price Item
1 Manny Tomanny 12 Apr 1966 01 May 1999 Henderson Harrison $235.00 Desk
2 Norma Lyzation 03 Apr 1966 01 Apr 2002 Thompson Ford $234.00 Chair
3 Manny Tomanny 12 Apr 1966 01 May 1999 McColgan Harrison $415.00 Table
4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Wellington Ford $350.00 Lamp
5 Cas Kade 01 May 1977 01 Apr 2002 Henderson Ford $234.00 Chair
6 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Wellington Ford $350.00 Lamp
7 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Henderson Harrison $235.00 Desk

SINGLETABLE

9 • Serious problems with single tables

63

Redundant data
There is a considerable amount of repeated (or redundant) data in this table.
Names, prices and dates are all stored multiple times, simultaneously wast-
ing vast amounts of disk space and potentially slowing down any queries we
run against the table. In addition, every time an employee makes another
sale, we have to type in their name, date of birth, date first employed etc..
Would you want to type in all that data every time? And, since many of our
customers (hopefully) will be giving us multiple orders, we will find that
their details are also appearing over and over again. In addition, you will no-
tice that we use Harrison as our supplier of desks. This fact is recorded twice
already in the table and, if we sell a thousand desks, it will be immortalized
1,000 times; one can’t help feeling that once would be enough. And the prob-
lems don’t end with the amount of work required to input the data.

Typographical errors
Each row in this table represents a sale and we would hope that most custom-
ers come back for repeat purchases. If you had to type in words like
‘Henderson’ and ‘Thompson’ several hundred times (once for each sale to
that customer), could you guarantee to do so perfectly every time? What
about ‘McCollgan’ (one ‘l’ or two)? And even if you were sure you could do it
correctly each time, what happens if several different people are entering
data into the table? Will they all be consistent? It is all too easy to end up with
a table like this:

If we now search the table to find out how many sales a certain ‘Rosanne
Kolumns’ has made for the company, we will get the answer ‘one’. If she
works on commission she will not be pleased.

OrderNo FirstName LastName DateOfBirth DateEmployed Customer Supplier Price Item

1 Manny Tomanny 12 Apr 1966 01 May 1999 Henderson Harrison $235.00 Desk

2 Norma Lization 03 Apr 1966 01 Apr 2002 Tompson Ford $234.00 Chair

3 Manny Tomanny 12 Apr 1966 01 May 1999 McCollgan Harrison $415.00 Table

4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Wellington Ford $350.00 Lamp

5 Cas Kade 01 May 1977 01 Apr 2002 S. Henderson Ford $234.00 Chair

6 Rosanne Fields 21 Mar 1977 01 Jan 2000 Ms Wellington Ford $350.00 Lamp

7 Rosa Kolumn 21 Mar 1977 01 Jan 2000 Henderson Harrison $235.00 Desk

VERYBADSINGLETABLE

9 • Serious problems with single tables

64

Incidentally, just in case you don’t believe that people really make typo-
graphical errors, the following is a list of variations of my name that I re-
ceived in the post over a period of about five years. Many have been received
multiple times and most appear to be in some kind of database or other. For
the record, I do have two middle initials: they are A and F – and a PhD.

I rather like ‘Whitehorn Dark’; it’s sophisticated and a little mysterious.
Dwhutehorn is not bad either, but I’m not so sure about Whipehorn… nor
about NAF Whitehorn.

Modifying data
Given that all of the data is placed in a single table, we have problems when
we try to store or change certain types of information. These problems are
generically called ‘modification anomalies’ and can be demonstrated with the
table shown above and reproduced below.

D Whitehorn Dr Whytehorn
Dr A Whitehorns Dwhutehorn
Dr M A F Whiteh Marie Whitehorn
Dr M A T Whitehorn Marj Whitehorn
Dr M A Whitehord Mark Whitburn
Dr M F Whitehorn Mark Whitehall, Esq.,
Dr M Tehorn Mark Whiteham
Dr M Whiteham Mark Whitehaven
Dr M Whitethorn Mark Whitehern
Dr M Whitewhorn Mark Whiteholn
Dr M Whytehorn Mark Witehorn
Dr MAF Whitecorn Mike Whitehorn
Dr Mark Whitehord Mr D R Whitehorn
Dr Mark Whitekorn Mr D.A.M. Whitehorn
Dr MHF Whitehorn, BSc, PhD Mr M Horn
Dr N A F Whitehorn Mr M Whiteham
Dr N Whitehorn Mr Mack Horn
Dr Whipehorn Mr Mark Whitehead
Dr Whitehall Mr Mark Whitehoarn
Dr Whitehan Mr Mark Whitehouse
Dr Whitehorne Mr Mark Whithorn
Dr Whitekor Whitehorn Dark
Dr Whiteman

9 • Serious problems with single tables

65

Suppose we delete the row for sale number 3 (the record with an OrderNo of
3). This happens to be the only record that contains the data which tells us
that tables are supplied to our company by Harrison and that they cost
$415.00. We can’t afford to lose this information but, given a single table, we
have nowhere else to store it.
And what happens if we want to store information about a new employee
who has just started work but hasn’t made any sales yet? If we insist on using
this single-table structure, we have to wait until the new employee makes his
or her first sale before we can record the fact that the new employee was born
on 01 May 1967 or we have to use incomplete records to store such informa-
tion.
Finally, if Rosanne gets married and decides to change her last name, we will
have to find and change, not one piece of information, but several.
These three are known, respectively, as ‘deletion’, ‘insertion’ and ‘update’
anomalies. All three can be cured by using an additional pair of tables, one to
store information about the items that we sell, the other for information about
employees.

Summary
Single tables suffer from serious problems when they are used to store com-
plex information. Those problems are:

Redundant data which makes the table large, slow and unwieldy.
Typographic errors caused by typing the same information multiple
times.
Difficulties in updating and modifying data.

I am aware that some of these problems can be overcome without the use of
multiple tables. For example, consider the problem of Rosanne Kolumns’
name change. We could use an update query to replace her old name with

OrderNo FirstName LastName DateOfBirth DateEmployed Customer Supplier Price Item
1 Manny Tomanny 12 Apr 1966 01 May 1999 Henderson Harrison $235.00 Desk
2 Norma Lyzation 03 Apr 1966 01 Apr 2002 Thompson Ford $234.00 Chair
3 Manny Tomanny 12 Apr 1966 01 May 1999 McColgan Harrison $415.00 Table
4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Wellington Ford $350.00 Lamp
5 Cas Kade 01 May 1977 01 Apr 2002 Henderson Ford $234.00 Chair
6 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Wellington Ford $350.00 Lamp
7 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Henderson Harrison $235.00 Desk

SINGLETABLE

9 • Serious problems with single tables

66

the new. In addition, we might even decide that we want to keep her old
name on the old orders. The deletion and insertion anomalies are more diffi-
cult to deal with, although we could start storing records which are incom-
plete.
However, experience has shown that these solutions end up being more com-
plicated than going over to a multi-table database. After all, multi-table data-
bases don’t have any virtue in themselves; the only reason that they have
been widely adopted is that they solve the problems inherent in single-table
databases in the most efficient way possible.

10 • Multiple tables cure serious problems

67

Chapter 10

Multiple tables
cure serious problems

So, let’s have a look at the way in which multiple tables can remove these prob-
lems.
The two tables shown below hold the same information as the unwieldy one
from the last chapter but together they take up less space on the hard disk. (In
fact, the reduction in disk space is completely trivial in this example because
the initial table was so small. However, as later examples will show, the saving
becomes really significant with greater quantities of data.)

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002

EMPLOYEES

OrderNo EmployeeNo Customer Supplier Price Item
1 1 Henderson Harrison $235.00 Desk
2 4 Thompson Ford $234.00 Chair
3 1 McColgan Harrison $415.00 Table
4 2 Wellington Ford $350.00 Lamp
5 3 Henderson Ford $234.00 Chair
6 2 Wellington Ford $350.00 Lamp
7 2 Henderson Harrison $235.00 Desk

ORDERS

10 • Multiple tables cure serious problems

68

What I have done is to move the data relating to employees into a separate
table and to use a ‘pointer’ to that data in the form of the EmployeeNo field in
the ORDERS table. Thus from the ORDERS table we can see that sale number 2
was made by the employee with the EmployeeNo of 4. Referring to the
EMPLOYEES table, we can then see that this is Norma Lyzation. (This use of
‘pointers’ is essentially part of the mechanism used to maintain a relational
database and is covered in detail in Chapter 14 – How are relationships
modeled?)
In fact, it is clear that we could continue this process and separate out the in-
formation about customers into a third table and the information about items
into a fourth. However, with the very restricted number of columns shown in
this cut-down table, that would be rather pointless. In addition, the process
involved in creating each of those would be exactly the same as that required
for the EMPLOYEES table, so we’ll just use these two tables to illustrate the gen-
eral principle for now.
It is true that to recover the original information, constant reference must be
made to the employee number in both tables and the process feels horribly
unwieldy. In practice the RDBMS will do this for you transparently (meaning
that you don’t even have to be aware that it is being done). As we will see
later, once the database has been set up, you wouldn’t normally look at these
tables in their ‘raw’ state like this. Instead, you would interact with the data
via forms which would show the data in whatever manner you desired, such
as an order-centric view:

10 • Multiple tables cure serious problems

69

or an employee-centric view:

In the last chapter we looked at four areas that can be problematical if you
use single tables, namely:

Redundant data
Typographical errors
Updating data
Modifying data

We’ll cover the same four areas again, looking at how the use of multiple ta-
bles can reduce or eliminate those problems.

Redundant data
Given the small examples shown here, the savings in table size produced by
splitting tables appear trivial but more realistic tables have significant sav-
ings. For example, suppose you have 1,000 employees and store 1 KByte of
data about each. Your database also stores 2 KBytes of data about each of
100,000 sales. If you elect to use a single-table solution, each of the 100,000
rows will contain an extra 1 KByte of data about the sales person. Given a
two-table solution, that information is held only once. Thus the sizes are:

10 • Multiple tables cure serious problems

70

The figures shown in the table have been rounded slightly as befits a rule of thumb
estimate.
For information:
1,024 Bytes = 1 KByte
1,024 KBytes = 1,048,576 Bytes = 1 MByte.
The saving of one third is slightly exaggerated since adding the EmployeeNo
fields to the two-table system produces a slight overhead but you probably
get the general idea.
This looks good but it gets better. As the complexity of the data expands, the
size problem inherent in using a single table increases catastrophically. Sup-
pose we assume (quite reasonably) that each order can be for more than one
item. Since each row in the single-table solution can only hold information
about one item in the order, an order for three items will need three rows in
the table.

One Table Two Tables

No. of rows 100,000 100,000 (from the ORDERS table) + 1,000
(EMPLOYEES table) = 101,000

Employee data 100,000 KBytes 1,000 KBytes
Sales data 200,000 KBytes 200,000 KBytes
Total data 300 MBytes 201 MBytes
Data saving 99 MBytes

Part OrderNo FirstName LastName DateOfBirth DateEmployed Supplier Item Customer

1 1 Manny Tomanny 12 Apr 1966 01 May 1999 Harrison Table Henderson
2 1 Manny Tomanny 12 Apr 1966 01 May 1999 Harrison Desk Henderson
3 2 Norma Lyzation 03 Apr 1966 01 Apr 2002 Ford Chair Thompson
4 3 Manny Tomanny 12 Apr 1966 01 May 1999 Harrison Table McColgan
5 3 Manny Tomanny 12 Apr 1966 01 May 1999 Ford Chair McColgan
6 4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Ford Chair Wellington
7 4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Ford Lamp Wellington
8 4 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Harrison Desk Wellington
9 5 Cas Kade 01 May 1977 01 Apr 2002 Ford Chair Henderson
10 5 Cas Kade 01 May 1977 01 Apr 2002 Ford Lamp Henderson
11 6 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Harrison Table Wellington
12 6 Rosanne Kolumns 21 Mar 1977 01 Jan 2000 Ford Lamp Wellington
13 7 Rosanne Kolumns 21 Mar 1977 01 Jan 1990 Harrison Desk Henderson

MULTIPLEPARTORDERS

10 • Multiple tables cure serious problems

71

We can make the same assumptions as before: 1,000 employees, 1 KByte of
data about each one and 100,000 sales with 2 KBytes about each. We can add
the assumption that we can sell any one of 2,000 different items (and hold 1
KByte on each one) and we will assume that an average order is for five
items. The correct way of handling this data is to split it across four tables,
one for the employees, one for the orders, one for the items and a fourth one
which joins the items to the orders. The need for this fourth table hasn’t been
explained as yet (it will be in Chapter 14) but if you could take it on trust for
the present, it will make my life a lot easier. (Trust me, I’m a database freak.)
Each row in this joining table will be tiny, perhaps 8 bytes long, or 0.01
KBytes to be generous.
Again we can compare the efficiency of the single-table and multiple-table
solutions in an approximate manner:

The four-table solution uses just a tenth of the space used by the one-table
solution. While this waste of disk space is horribly inelegant, an even greater

One-table solution Four-table solution

No. of rows 500,000 1,000(EMPLOYEES) +
100,000(SALES) +
2,000(ITEMS) +
500,000(JOIN) =
603,000

Employee data 500,000 x 1 KByte = 1,000 x 1 KByte = 1,000 KBytes

Sales data 500,000 x 2 KByte = 100,000 x 2 KByte = 200,000 KBytes

Items data 500,000 x 1 KByte = 2,000 x 1 KByte = 2,000 KBytes

Joining data None 500,000 x 0.01 KByte = 5,000 KBytes

Total 500,000 KBytes +
1,000,000 KBytes +
500,000 KBytes =
2,000,000 KBytes =
2 Gbytes

1,000 KBytes +
200,000 KBytes +
2,000 KBytes +
5,000 KBytes =
207,000 KBytes = 207 MBytes

Saving Approx. 1,800 MBytes = 1.8 GBytes

10 • Multiple tables cure serious problems

72

problem is that all of this repeated data will really slow the database down.
This example doesn’t use a separate table for Customers. As an exercise, if you feel so
inclined, you can calculate the additional savings if we assume that we have 2,000
customers and store 2 KBytes of data about each one.

Typographical errors
You are, of course, still at liberty to misspell poor Rosanne’s last name. How-
ever, if you do, the error is likely to be much more obvious because every
time her name appears it will be incorrect. In addition, since her name only
has to be typed in once, we might hope that data entry boredom would be
less of a factor.

Modifying data
The various modification anomalies described in the previous chapter disap-
pear as soon as we move to a multi-table solution, assuming that the data is
split up into an acceptable set of tables. For example, as you can see, we have
been able to accommodate a couple of new employees without generating an
incomplete record.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

11 • Making multiple tables work together

73

Chapter 11

Making multiple tables
work together

You may wonder about the use of the word ‘object’ in this and subsequent chapters.
You may have noticed heard about object-oriented programming and you might won-
der if there is any connection. In fact, we are using the word ‘object’ here simply to
mean ‘thing’ or ‘entity’. The only reason we don’t use the word ‘thing’ is that it looks
thoroughly unprofessional to do so in a book about a serious subject like databases.
There is, however, no hidden complex meaning in ‘object’ as the word is used here and
if you want to mentally substitute the word ‘thing’, that’s fine by me.
The only added complexity is that occasionally we will need to distinguish between an
object itself and the class (or type) to which it belongs. For example, Norma Lyzation is
an object and she happens to belong to the class of objects called Employees and infor-
mation about her is therefore stored in the EMPLOYEES table. In practice, people often fail
to distinguish between these in conversation. They will say, for example, “Employees
and customers are clearly different objects”; in fact they mean “Employees and custom-
ers are clearly different classes of object”.
Worrying about the distinction between an object and the class to which it belongs
shouldn’t keep you awake at night and we will follow common practice by not bother-
ing to make the distinction unless we think it makes the text clearer to do so.
The last chapter should have convinced you that multiple tables are the only
way in which to store complex data efficiently. Now we need to look at how
they can be managed in a relational database. This in turn brings us to a con-
sideration of what we want a database to do for us.

11 • Making multiple tables work together

74

Databases are designed to model the real world
The real world is full of objects – employees, orders, customers, items for sale
etc.
In the real world, these objects have relationships with each other – one em-
ployee will deal with multiple customers, one customer can buy multiple
items and so on.
Databases, therefore, have to store information about these different objects
and also about the relationships that exist between them.
What should you think about before you can build a database? There are five
key areas which need to be considered:
1. How is information about the different objects to be stored in the data-

base? In other words, how do we ‘map’ our real world objects onto our
tables and ensure that we get the right data into the right tables?

2. What relationships can exist between real world objects?
3. How are these relationships modeled and maintained in a database?
4. How can we make the tables, forms, queries and reports work together

in a database?
5. How do we maintain integrity within the data that we store in the data-

base?
I suspect that it will come as no great surprise that these five topics make up
the next five chapters.

12 • Getting the data into the correct tables

75

Chapter 12

Getting the data into the
correct tables

How do you ensure that you split up your data into an acceptable set of tables?
For example, I might decide to store all of the information about employees in
one table; but is that always the right decision? Is it always a good idea to have
a separate table for the items that we sell? Again, if we sell mostly furniture
and then start selling ice-cream, should the information relating to ice-cream
sales go in the same table as that for furniture sales or a different one? How are
you supposed to make these decisions?
Well, there’s some good news and some bad news. The bad news is that this
can develop into a complex question, with equally complex answers. The good
news is that it usually doesn’t. If, for example, you are trying to build a multi-
table database for a small to medium-sized business, it is usually fairly obvi-
ous which tables you need and there is an excellent ‘rule of thumb’ to help you,
which is as follows:

Provide a separate table for each class of ‘real world’ object about which you are
trying to store information in the database.

That’s it. Thus an employee is one such class of object, a customer is another
and an order is a third. (Chapter 14 discusses an ‘extension’ to this rule but I’d
ignore it until you get there, unless, of course, I have inflamed your curiosity
by mentioning it.) We then give each table only the fields that contain informa-
tion which is unique to the object that the table represents. So the name of the
customer goes into the CUSTOMERS table, the name of the employee into the
EMPLOYEES table and so on.
Which bring us rather neatly to the problem that I posed above. If we sell
mostly furniture and then start selling ice-cream, should the information relat-
ing to ice-cream sales go in the same table as that for furniture sales or a differ-
ent one?

12 • Getting the data into the correct tables

76

I can’t give an immediate ‘Yes/No’ answer here because it will depend on the
information that we need to store. So let’s think about that information before
deciding.
Suppose we sell furniture and want to store the following information about
each piece that we stock:

Stock no.
Purchase date
Purchase price
Sale date
Sale price
Color

Then we start selling ice-cream and it so happens that we want to store the
following information about ice-cream:

Stock no.
Purchase date
Purchase price
Sale date
Sale price
Color

Since we happen to be interested in exactly the same characteristics (or prop-
erties) for these two classes of object (furniture and ice-cream), then as far as
the database is concerned, we actually have only one class of object here. In
other words, we can happily store furniture and ice-cream in the same table.
If, on the other hand, the information we wanted to store about ice-cream was
characterized like this:

Stock no.
Flavor
Melting point
Shelf life
Viscosity

then it would clearly be foolish to try to store the information about ice-cream
in the same table as the information about furniture.
Rather neatly, the act of considering this sort of problem gives us another
mechanism for identifying classes of object in the database. This doesn’t mean
that we have to alter the rule of thumb given above, it simply means that we

12 • Getting the data into the correct tables

77

now have an additional way of identifying and classifying objects.
Objects can be distinguished by the properties (characteristics, attributes –
call them what you will) that we want to store about them in the database.
Suppose you are evaluating two apparently different object types, say full-
time and part-time employees. Simply list the properties (fields) that you
need to store about each one. If the list is the same, then they are actually one
type of object and you only need one table. If the list is different, you have
two classes of object and need two tables.

Not normalization (and not ER modeling either)
So, the rule of thumb is simple: give each ‘real world’ object class a table of its
own.
However, I would be failing in my duty if I didn’t tell you that there are
times, particularly if you are working on large complex databases, where this
rule of thumb (even in modified form discussed in Chapter 14) fails to ensure
that you have chosen the correct tables and fields. This failing was noticed
early in the history of relational databases and a process called normalization
emerged and there is a large chapter dedicated to normalization in Part 4. The
reason that it isn’t covered here is simply that, under most circumstances with
simple databases, the rule of thumb is sufficient.
Personally, if this was my first attempt to understand relational databases, I’d
ignore normalization for now and concentrate on all the other concepts that
have to be absorbed. Then, once I’d got a good grasp of those, I’d read the
chapter on normalization. This isn’t meant to imply that normalization is a
particularly difficult concept, simply that you probably don’t need it now.
While we are on the subject of ‘nots’, there is another process called Entity
Relationship (ER) modeling which is worth mentioning (but not covering)
here. ER modeling started as a way of representing the design of a database
on paper. It is a formalized way of showing the overall design of the database
without including so much detail that the complete picture is difficult or im-
possible to understand. Not surprisingly, computerized packages have subse-
quently been developed which allow you to lay out these designs on screen.
ER modeling is wonderful and makes the process of database design much
easier for a relatively complex database. So, don’t bother with it for now, but
when you feel the need, it’s covered in Chapter 18.
Anyway, that’s enough about what we are not going to cover here…

12 • Getting the data into the correct tables

78

We are going to need an example to demonstrate how you can get the right
data into the right tables, so let’s rough out an example database now and try
to identify the obvious objects that make up the data. I’ve tried to chose an
example that is large enough to illustrate all of the principles we need but not
so large that it becomes unwieldy.

Object identification
Imagine that you run a small business which exists to sell items to customers.
Immediately we can see at least three object classes – Customers, Items and
Orders (which records the transactions).

You employ people who work for you (object class – Employee).
Certain of your employees are allocated rooms in the head office in
which to work (object class – Rooms).
You also rent buildings such as warehouses (object class – Buildings).

We can go on for a while longer (an object class like ‘Suppliers’ springs in-
stantly to mind) but these six objects are all we need to illustrate the princi-
ples.
So, we have six clearly defined object classes:

Customers
Items
Orders
Employees
Rooms
Buildings

Following the rule of thumb we need six tables:
CUSTOMERS – information about customers.
ITEMS – information about the items that we offer for sale.
ORDERS – information about orders placed.
EMPLOYEES – information about employees.
ROOMS – information about the individual rooms in our head office.
BUILDINGS – information concerning the rents that the company pays
for its buildings.

What fields will go into each table? Only those which are unique to that table.

12 • Getting the data into the correct tables

79

Consider into which table you would place the following potential pieces of
information:

Date of birth of employee
Order number
Customer name
Employee name
Item name
Customer address
Next of kin of employee
Room numbers
Rent

and the answers:
Date of birth of employee – EMPLOYEES

Order number – ORDERS

Customer name – CUSTOMERS

Employee name – EMPLOYEES

Item name – ITEMS

Customer address – CUSTOMER

Next of kin of employee – EMPLOYEE

Room numbers – ROOMS
Rent – BUILDINGS

To stop this all sounding too abstract, here are a couple of the tables, each
with a small quantity of data. Again I have tried to keep these as small as pos-
sible.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

12 • Getting the data into the correct tables

80

That’s it for now. As we’ve said, this process can become more complex but
there are mechanisms to cope with that complexity (see Chapters 14 and 18).
However, the basic principle really is as simple as this chapter suggests, so
we’ll move on to talk about the relationships that can exist between real
world objects.

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

81

Chapter 13

Relationships in the real
world

It is worth remembering that each table represents a type of object in the real
world. If this were a real (rather than a demonstration) database, each record
in the CUSTOMERS table would refer to a real customer and each entry in the
EMPLOYEES table would represent a real employee. The first step in deciding
what relationships we need to set up between the tables is to ask the question
“What types of relationships can exist between these real world objects?”
The term ‘relationship’ as used here has nothing to do with the use of the word
‘relational’ in ‘relational database’ (see Chapter 21). It is used here simply to imply an
association and/or interdependency.
It turns out that there are four possible kinds of relationship between any
given pair of objects, as follows:

One-to-many
One-to-one
Many-to-many
None

One-to-many
The relationship between customers and the orders that they can place with
our mythical company is a one-to-many relationship. This simply means that
each customer can place none, one or more orders with the company. The rela-
tionship is asymmetrical in that any given order is placed by one and only one
customer. Note that there is no implication that any one customer has to have
placed an order before we can store that customer’s details in the database.

14 • How are relationships modeled?

82

Nor does the word ‘many’ imply that a customer must place lots of orders,
only that we are allowing for that possibility.
One-to-many relationships happen to be very common; they appear over and
over again in the business world.

One-to-one
Suppose that, for whatever reason, it is essential that each of our employees is
allocated their own room in the company, perhaps because the company buys
and sells bearer bonds and customers prefer to carry out these transactions in
private. We therefore decide that it is a rule within the company that each em-
ployee must be allocated to one room but that owing to cost considerations,
no employee is ever allocated more than one room.
The relationship that exists between rooms and employees is a one-to-one
relationship. Note that, in this case, we might well have rooms that aren’t al-
located to employees, so again the relationship doesn’t have to be symmetri-
cal.
One-to-one relationships are uncommon.

Many-to-many
Consider the relationship between customers and employees. Over a period
of time, would you expect a customer to be served by one or more than one
employee and would you expect an employee to serve multiple customers?
The answer to both of these questions is typically ‘Yes’, at least in most com-
panies. Thus the relationship between customers and employees is a many-
to-many relationship. In this case the relationship is symmetrical. Once again,
there is no implication that a given customer has to be served by multiple em-
ployees, indeed after their initial contact with our company they will pre-
sumably have dealt with only one employee. However, the potential exists
for each customer to interact with multiple employees and vice versa.
Many-to-many relationships are very common in business situations.

None
Some of the objects under consideration here do not have any relationship

13 • Relationships in the real world

14 • How are relationships modeled?

83

with each other. For example, the information about building rents has no
relationship with the information about customers. We can ignore this class
of relationship (or lack of it!); it is only included in this list for the sake of
completeness.

Mapping real world relationships to tables
So, there are three possible kinds of relationship which we need to actively
consider between the objects represented in a database:

one-to-many
one-to-one
many-to-many

of which only the first and third are common.
I have taken the trouble to enumerate these because we can map the relation-
ships between the objects in the real world (customers, employees etc.) onto
the tables which hold information about those objects. For example, the one-
to-many relationship between customers and orders maps directly onto the
CUSTOMERS and ORDERS tables as we shall see in the next chapter.
As an exercise you might like to consider the six object classes in the database
and decide upon the obvious relationships that exist. Unless you are a maso-
chist, don’t bother with the less obscure ones. I know it sounds unlikely but if
we explicitly declare the obvious ones, the more obscure ones tend to take
care of themselves. In addition, given six object classes there are
5+4+3+2+1=15 possible relationships so it will be a slightly tedious exercise if
pursued to its conclusion.

13 • Relationships in the real world

14 • How are relationships modeled?

84

Chapter 14

How are relationships
modeled?

OK, so we’ve got our objects – employees, customers, orders etc. – nicely rep-
resented as tables in the database. We now understand the relationships that
can exist between these objects. The next step is to see how we can model the
relationships in the database.
The tools we use to perform this wizardry are:

keys (both primary and foreign)
joins

These two can be considered separately but in practice their use tends to be
interwoven. For example, you need to create one or more primary keys be-
fore you can create a join but it is the act of creating a join which essentially
completes the creation of a foreign key. In case this makes these tools sound
horribly complicated, they aren’t at all. In fact, once you understand them,
they have a wonderful elegance and simplicity which makes you wonder
how you ever lived without them. Me, I lie in bed at night just dreaming
about them.
The easiest way to discuss these two is to see them in action. A very common
form of relationship is the one-to-many relationship already discussed in the
previous chapter. This is exemplified by the relationship which exists be-
tween customers and the orders that they place with a company, so we’ll use
that as the first example.
Remember the naming convention discussed in Chapter 3? I have elected always to
use UPPER-CASE for table names and CamelCaps for field names. If I need to refer
to a specific field in a specific table, I will always do so by separating the two names
with a dot or point (.). Thus:

CUSTOMERS.CustomerNo

14 • How are relationships modeled?

85

refers to the CustomerNo field of the table called CUSTOMERS.
I have extended the simplified version of the ORDERS table we used earlier; it
now has pointers to the CUSTOMERS table as well as the EMPLOYEES table.

These three tables come from the sample database (CHAP14A.MDB): their pri-
mary keys are emboldened and the foreign keys italicized.
This version of the ORDERS table is not perfect since it still stores redundant informa-
tion about the items which should really be in the ITEMS table. However, this is as com-
plex a structure as we need for now and the ORDERS table will be improved later on in
the chapter.
If you have a look at the CUSTOMERS and ORDERS tables above you can see that

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

14 • How are relationships modeled?

86

the data which ties them together is contained in two fields (one in each ta-
ble), both of which are called CustomerNo. It should be reasonably clear that
the number 2 in the first record of ORDERS.CustomerNo means that Sally Hen-
derson bought a desk. We are using the value 2 here as a pointer to the record
in CUSTOMERS which refers to Sally. You can use the same logical process to
deduce that Manny Tomanny was the employee who clinched the deal.
We could use either the relationship between CUSTOMERS and ORDERS or the
relationship between EMPLOYEES and ORDERS to illustrate the use of keys be-
cause both are built and managed in exactly the same way. In an entirely arbi-
trary manner, I’ll elect to use CUSTOMERS and ORDERS, so you can forget about
the EMPLOYEES table for a while (but it will return in due course).
In order for the two CustomerNo fields to be able to tie the tables together in a
sane and meaningful way, each field must display certain characteristics.
These characteristics can be summed up by saying that CUSTOM-
ERS.CustomerNo must be a primary key and that ORDERS.CustomerNo must be a
foreign key.
So, to create a one-to-many relationship between two tables, you need a pri-
mary key in one table and a foreign key in the other. The primary key models
the ‘one’ end of the relationship and the foreign key models the ‘many’ end.
We are using these fields and numbers to represent the relationship that ex-
ists in real life between customers and the orders they place, namely that one
individual customer can place multiple orders with the company.
Clearly, primary and foreign keys are important, so we’ll have a look at their
characteristics in more detail now.

Primary keys
The exact requirements for a primary key are simple. I could list them for you
now but it is considerably more fun (and hopefully more memorable) to de-
rive them. So much of relational theory is actually common sense that you
can derive many of the rules for yourself.
Remember that the CustomerNo field in CUSTOMERS is the primary key of that
particular table. So consider this field: CUSTOMERS.CustomerNo. It contains a
number which identifies each customer: 1 is Brian Thompson, 2 is Sally Hen-
derson and so on. What would happen if both of these customers were given
the same number, say, 1? The tables would look like this:

14 • How are relationships modeled?

87

and it is now impossible to determine who should be sent the bill for order
number 2; it could have been either Brian or Sally who bought the chair. (In
addition, order numbers 1, 5 and 7 are also problematical but we’ll deal with
that class of problem in the section on foreign keys.) So, the first rule we can
derive about primary keys is that the values placed in primary key fields
must be unique for each record: no duplicates can be tolerated.
Next, what happens if a value in a primary key field isn’t entered?

CustomerNo FirstName LastName
1 Brian Thompson
1 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson

Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

88

Harry hasn’t got a value for CUSTOMERS.CustomerNo. Does he have to pay for
that third order or not? Even if the tables looked like this:

the answer is still not clear. The easiest way to avoid this kind of ambiguity is
to insist that all primary keys have a value. A missing value in a database is
called a null value and the problems (sorry, challenges) associated with nulls
make them worthy of their own small chapter (Chapter 31) in Part 4. See that
for more details.
Finally, it seems worth stating explicitly that there is no need for primary key
values to be sequential. The following are perfectly fine as primary key values.

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson

Harry McColgan
4 Sandra Wellington

CUSTOMERS

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

14 • How are relationships modeled?

89

That’s it. We have just derived the important characteristics of a primary key
– namely that the information it contains for each record must be unique and
must not be a null value. RDBMSs like Access, of course, ‘understand’ these
rules. All we have to do is to tell Access which fields are primary keys and it
will ensure that we are never allowed to create a record which breaks either
of these rules. “Hmm,” you’re probably thinking. “Does he really mean that if
a table contains 100,000 customers, Access will check each and every new one
that I add against all of the other to ensure that the rule about ‘no duplicates’
is obeyed and none of the values in CustomerNo is duplicated?” Yes, that’s
what I mean. In fact, Access (and any good RDBMS) can do this so quickly
and with so little effort that you won’t even notice it happening.
It isn’t obligatory that primary keys are numeric values, but they probably
will be in most cases.

Using multiple fields as primary keys
Although it may not immediately be apparent, these two requirements
(unique values and no nulls) don’t limit a primary key to a single field.
There is nothing to stop you from declaring two fields, say FirstName and Last-
Name, to be the primary key. If you do that, then the contents of both fields in
both records have to be identical before the uniqueness of the data is compro-
mised. So you would be able to have ‘John Smith’ and ‘John Smyth’ in your

CustomerNo FirstName LastName
1 Brian Thompson
42 Sally Henderson
68 Harry McColgan
112 Sandra Wellington

CUSTOMERS

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 42 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 68 Harrison $415.00 Table
4 2 112 Ford $350.00 Lamp
5 3 42 Ford $234.00 Chair
6 2 112 Ford $350.00 Lamp
7 2 42 Harrison $235.00 Desk

ORDERS

14 • How are relationships modeled?

90

table but not two people called ‘John Smith’. Despite the fact that it is possible
to create a primary key from more than one field, as a general rule it is usu-
ally a bad idea, unless there is a clear reason to do so. However, there are
some cases where it is essential. We’ll have a look at an example later in this
chapter, in the section on many-to-many joins.

What makes a good primary key?
So, having told you that it is possible to use one or more fields as a primary
key, how do you decide which fields (and how many) to choose?
Well, as outlined above, there are times when it is advisable or essential to
use multiple fields. However, if you cannot see an immediate reason to use
two or more fields, then use one. This isn’t an absolute rule, it is simply ad-
vice. However, primary keys made up of single fields are generally easier to
maintain and faster in operation. This means that if you query the database,
you will usually get the answer back faster if the tables have single field pri-
mary keys.
Next question – which field should you pick? Well, the value in the chosen
field must uniquely identify the record in which it appears. In a table of em-
ployees, clearly any field like FirstName is a poor choice since you would only
be able to have one employee called ‘Bill’.
There is a story which I have heard several times. It says that in the early days of the
company, Bill Gates wouldn’t employ anyone else at Microsoft called Bill. The usual
figure quoted (see Accidental Empires by Robert X. Cringely) is that the company
had to get to well over 500 employees before another Bill was hired. It’s a great story;
it just happens to be untrue. Bill Marklyn, the co-author of this book, was hired long
before that. Clearly Microsoft doesn’t use FirstName as the primary key in its EM-
PLOYEE table.
The easiest way to choose a field as a primary key (and a method that is rea-
sonably commonly employed) is to get the database itself to automatically
allocate a unique number to each record. Access has a field type called Auto-
Number which will do this for you. It is excellent for objects like orders, em-
ployees and so on. However, you might find that you are already storing a
unique identifier in the table. In the UK, for example, you might well want to
record an employee’s National Insurance number, and in the USA there is the
Social Security number. These are guaranteed to be unique, so you might well
use the appropriate one as a primary key.
Finding truly unique identifiers is not as easy as it first appears. See Chapter 32 for
more details.

14 • How are relationships modeled?

91

How do I create a primary key?
Creating primary keys is an important process and although this isn’t a book
about ‘how to use Access’, illustrating how it is done at each step helps clarify
the differences that exist between primary and foreign keys. For example, cre-
ating a primary key is done during table design, whereas creating a foreign
key is not done explicitly; rather, it is done as part of the process of creating a
join.
So to answer the question about how you create a primary key: during table
design, you simply click on the field you want to be the primary key and then
click on the ‘Set Primary Key’ button in the toolbar. By convention, the pri-
mary key field is placed first in the table, although it doesn’t have to be. If you
want to set two fields to be the primary key, simply select both at the same
time before clicking the ‘Set Primary Key’ button. That’s it.

Foreign keys
Since we’ve been using CUSTOMERS and ORDERS as an example, we’ll stay
with them and demonstrate the characteristics of a foreign key in a one-to-
many relationship. A foreign key is simply one which references a primary
key; in this case the foreign key is the field ORDERS.CustomerNo.

Once again we can derive the most important ‘rules’ about foreign keys intui-
tively. Consider the values in these tables:

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

92

(Hint: the last row in ORDERS is worth examining.)
The last row in ORDERS contains the value 5 in CustomerNo, which is a little odd
because we don’t have a customer with the number 5. So, given this particular
set of data, we have no idea who should be sent the bill for order number 7.
You will be way ahead of me by this point and will have worked out that we
cannot tolerate this sort of inexact information in the database, so a foreign key
must only contain values which are represented in the primary key.

How do I create a foreign key?
Foreign keys are created/defined during the process of creating a join, so
we’ll cover it when that process is described.

Summary so far
A couple of quick, slightly more formal definitions before we move on to
joins. The tables below are for reference should you need them.

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 5 Harrison $235.00 Desk

ORDERS

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

93

Primary key
Every table in a relational database must have a primary key. A primary key
consists of one or more fields. No value in a primary key can be a null value
(that is to say, no entry in a primary key may be left blank). Each row in a ta-
ble must be uniquely identified by the value contained within its primary
key, which is simply another way of saying that each value that appears in
the primary key must be unique. Primary keys are defined as part of the table
structure.

Foreign key
Foreign keys are not essential requirements for each table. In other words,
although each table must have a primary key, each one doesn’t have to have a
foreign key. However, if a relationship exists between two tables, one of those
tables will have a foreign key in which the values are drawn from the pri-
mary key of the other table. In practice, most tables do have foreign keys and
it is perfectly possible for a table to have more than one. If it has more than
one, the table must be involved in more than one relationship. Foreign keys
are defined when a join is made, a process that has so far been glossed over
but will now be described.

Joins
In this chapter we are looking at how we model relationships in a database. I
said at the start that the tools we use are:

keys (both primary and foreign)
joins

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

14 • How are relationships modeled?

94

We’ve covered keys, so let’s turn our attention to joins. In the previous chap-
ter we said that there are three possible types of relationship that can be mod-
eled in a database:

one-to-many
many-to-many
one-to-one

We’ll start with the most common, which is one-to-many.

One-to-many
Suppose that we have two tables like these:

Can we, just by looking at these tables, deduce what relationships exist between
them? The answer (like all good answers) is “Well, yes and no.” We can’t be
absolutely sure about any relationships that exist but we could have a good
guess.
We could guess that the ORDERS.OrderNo is a primary key; the field name
sounds promising and the values in the field uniquely identify the records.
We could also guess that CUSTOMERS.CustomerNo is also a primary key for the
same reasons.

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

14 • How are relationships modeled?

95

We could notice that the values in ORDERS.CustomerNo are all drawn from
the values in CUSTOMERS.CustomerNo which would lead us to suspect that
ORDERS.CustomerNo is a foreign key.
Why am I telling you this? Do I expect you to go around looking at tables and
guessing what relationships exist? No. What this exercise does is to highlight
the important bits which go into creating and maintaining a relationship be-
tween two tables.
With those firmly recalled, we can look at the entire process of modeling a
one-to-many join, which tends to go like this:

We decide that the database needs to contain information about two
objects – customers and orders.
The relationship between these objects is a one-to-many relationship.
That is, one customer can have many orders.
We will create one table for each class of object – CUSTOMERS and
ORDERS.
Each table will have a primary key for the simple reason that all tables
must have primary keys. These primary keys will be called
CUSTOMERS.CustomerNo and ORDERS.OrderNo.
Since we want the database to mimic real life, we want a one-to-many
relationship to exist between the two tables.
In order to make this relationship possible, we will need a foreign key
in the table which is at the ‘many’ end of the relationship – in this case,
the table ORDERS.
This foreign key field can have any name but it is often given the same
name as the primary key it references. It must, however, be of the same
field type as the primary key it references.
So, we add a field called CustomerNo to the table ORDERS.
Finally (the moment you have all been waiting for) we tell Access that a
one-to-many join exists between these tables.

In practical terms, this simply means that you open up the relationship editor,
add the two tables to the editor, drag CUSTOMERS.CustomerNo onto
ORDERS.CustomerNo and let go. When the dialog box appears, you select
‘Enforce Referential Integrity’, accept the default one-to-many option and
click on OK. (In case you are wondering what ‘Referential Integrity’ does, see
Chapter 16 – Integrity).

14 • How are relationships modeled?

96

This process tells Access that a join now exists. In addition, creating the join
has made ORDERS.CustomerNo a foreign key. You can play around, trying to
put a number into ORDERS.CustomerNo that doesn’t exist in CUSTOM-
ERS.CustomerNo. Every time you do, Access will refuse to accept it.
You can probably see now why joins and keys are so intimately tied together.
In order to put a join like this in place you need a primary key and you need a
field which is set up to be a foreign key. However, it is the act of creating the
join which actually confirms the field as a foreign key.
There are a few points that are worth noting here in passing. The join (with
referential integrity) will fail to be established if:

the field used at the ‘one’ end of the relationship isn’t a primary key.
the data types of the two fields used in the join are not identical.
data already exists in the table at the ‘many’ end which is not found in
the ‘one’ end.

On the subject of similar data types, I have said that it is common to use an
AutoNumber field as a primary key. You cannot use this as the data type at
the many end of a join. The data type to choose in this case is Number – Long
Integer. This isn’t as weird as it sounds. AutoNumbers are simply Long Inte-
ger fields that are automatically incremented.

One-to-one
One-to-one joins are uncommon. However, they are easy to understand and
create because they are very similar, in terms of construction, to one-to-many
joins. As in those, the join goes from a primary key in one table to a foreign
key in the other. The only difference is that the foreign key in the second table

14 • How are relationships modeled?

97

is not allowed to contain duplicate values. There are two ways of ensuring
that the foreign key doesn’t contain duplicate values.
One is to ensure that the foreign key of the second table is also its primary
key. In other words the join can be between two primary keys, one of which
also acts as a foreign key.
The other way is to give the foreign key a unique index, which again ensures
that it doesn’t contain duplicate values. Indexes are discussed in detail in
Chapter 34. This is the one I will demonstrate below.
In the sample database outlined above, some employees don’t have rooms
(traveling sales staff) and some do. The rooms are small, so only ever one em-
ployee is allocated to a room.

EMPLOYEES.EmployeeNo is a primary key, so no duplicates are allowed.
ROOMS.EmployeeNo has been given a unique index (during table design), so
no duplicates are allowed. In addition, it is also a foreign key and can only
contain values which already exist in EMPLOYEES.EmployeeNo.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

RoomNo EmployeeNo
1 2
12 4
23 1
24 6

ROOMS

14 • How are relationships modeled?

98

Thus:

is not allowed since the value 9 is not found in the primary key EMPLOY-
EES.EmployeeNo. In addition, the following:

is not allowed because the value 2 is repeated in ROOMS.EmployeeNo.
Creating a one-to-one join simply involves opening up the relationship editor,
adding the two tables to the editor, dragging EMPLOYEES.EmployeeNo onto
ROOMS.EmployeeNo and letting go. When the dialog box appears, you select
‘Enforce Referential Integrity’, accept the default one-to-one option and click
on OK.

RoomNo EmployeeNo
1 2
12 4
23 1
24 9

ROOMS

ROOMS
RoomNo EmployeeNo
1 2
12 4
23 1
24 2

14 • How are relationships modeled?

99

Note that ROOMS.EmployeeNo must have a unique index set before this join
can be created.
Further note that although the relationship exists between two primary keys,
it is not symmetrical. A value can exist in EMPLOYEES.EmployeeNo which does-
n’t exist in ROOMS.EmployeeNo but not vice versa.

Many-to-many
Many-to-many joins are common and, once mastered, are incredibly easy to
create.
Consider the relationship between customers and employees. Over the course
of time, one customer can be seen by many different employees; in addition,
one employee will typically deal with many customers. Thus the relationship
between customers and employees is a many-to-many relationship. The next
question to ask is “What defines an interaction between a customer and an
employee?” Well, while it is true that a customer might interact with an em-
ployee without actually buying anything, such interactions are unlikely to be
of interest, at least in terms of the database. The only time we are interested in
a customer/employee interaction is when an item is bought. Whenever an
item is bought, an order is generated, so it is the orders that define the inter-
action between customers and employees.
Now consider what relationship exists between customers and orders. An-
swer – one-to-many. The same kind of relationship exists between employees
and orders.

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

100

Unlikely as it sounds, creating a pair of one-to-many joins like this is all that
is required to create a many-to-many relationship between CUSTOMERS and
EMPLOYEES. In fact, there is no special mechanism for making a many-to-many
join – you always build them from two one-to-many joins. However, they
have to be constructed in the particular orientation shown here.

For example, the two one-to-many joins shown below do not create a many-
to-many join between the two outer tables.

OrderNo EmployeeNo CustomerNo Supplier Price Item
1 1 2 Harrison $235.00 Desk
2 4 1 Ford $234.00 Chair
3 1 3 Harrison $415.00 Table
4 2 4 Ford $350.00 Lamp
5 3 2 Ford $234.00 Chair
6 2 4 Ford $350.00 Lamp
7 2 2 Harrison $235.00 Desk

ORDERS

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

14 • How are relationships modeled?

101

Often, in my experience, when you identify a many-to-many relationship,
there is a handy table, like ORDERS in this case, which can act as the required
link in the middle. On other occasions this is not so and it is worth looking at
such a case because it will make our sample database slightly more realistic.
It also illustrates a case where a two-field primary key is essential (more or
less).

When multiple-field primary keys are essential
Consider our sample database from Chapter 12. In it, we identified six object
classes:

Customers
Items
Orders
Employees
Buildings
Rooms

We have been concentrating on three of these:
CUSTOMERS
ORDERS
EMPLOYEES

and initially we kept the structure of ORDERS relatively simple because we
were using it for demonstration purposes. Now we can look at ORDERS with
the structure that it needs in order to fit our initial model properly. I’ve also
included another three tables for easy reference. These tables are from the
sample database called CHAP14B, which will be used briefly, before we move
onto CHAP14C.

14 • How are relationships modeled?

102

As you can see, the ORDERS table is made up of a primary key
ORDERS.OrderNo and three foreign keys which reference the other tables.
It should be clear (hopefully) that this collection of tables, set up as they are,

OrderNo EmployeeNo CustomerNo ItemNo
1 1 2 1
2 4 1 3
3 1 3 4
4 2 4 2
5 3 2 3
6 2 4 2
7 2 2 1

ORDERS

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

ItemNo Supplier Price Item
1 Harrison $235.00 Desk
2 Ford $350.00 Lamp
3 Ford $234.00 Chair
4 Harrison $415.00 Table

ITEMS

14 • How are relationships modeled?

103

only allows one item to appear on each order. For example, order number 3 is
from Harry McColgan and he ordered item number 4, a table. But what if he
wanted a chair (or even four chairs) to go with it? As the tables are currently
constructed, there is nowhere to store information about multiple items per
order so each item requires a separate order.
There are several solutions to this problem, two of which can appear to be
both logical and easy to build; however, both can result in serious damage to
your database. It seems best to show them to you, if only to poke fun at them
and to ensure that you never try to use them.
Here is the first common (and bad) solution.

It looks good, doesn’t it? Instead of a single field for storing a reference to an
item, we have five. Harry now has his four chairs and the others can have ad-
ditional items on their orders if they so desire.
It may look good but it’s terrible in practice. For a start, adding four extra
fields may be enough for the present but what happens if a customer orders
two tables, a dozen chairs and a lamp? We can, of course, continue to add
fields. Suppose that we do this and it turns out that the greatest number of
items ever ordered on a single order is 28: we end up with 28 fields for items.
The problem is that the average number of items may be 3 so, on average, 25
of the fields will be wasted per record. This wastes disk space and slows the
database down.
In addition, look at the way the data is dispersed in the table. Suppose that
we want to find out how many chairs we have sold. It is impossible to be sure
which of the fields contain information about chairs, so we have to indulge in
complex searches of all the fields. This is a bad solution.
A better (but not great) solution is this:

OrderNo EmployeeNo CustomerNo ItemNo1 ItemNo2 ItemNo3 ItemNo4 ItemNo5
1 1 2 1 4
2 4 1 3
3 1 3 4 3 3 3 3
4 2 4 2 1 3
5 3 2 3 2
6 2 4 2 4
7 2 2 1 2

BAD-ORDERS-TABLE

14 • How are relationships modeled?

104

Now the field names provide the information about the nature of the item
ordered and the value tells us how many of each item was ordered. Harry
can now have his chairs, we know where to find the information about chairs
and we no longer have to worry about the number of different items on an
order; there’s always a field for each item in our range. Great. Sadly, this is
still a poor solution. What happens if we add an item to the range that we
sell? We have to add another field to the ORDERS table. If we add another, we
again have to alter the structure of the table ORDERS. What happens if we run
out of fields (many RDBMSs are limited to around 255 per table)? We also
have exactly the same wasted space problem as before. No, this one looks bet-
ter but it is still too bad to consider using.
So now we come to the right solution (you knew we’d get there in the end).
The rest of the tables shown in this chapter are taken from CHAP14C.MDB.
The best way to solve this problem is simple, once your brain is geared to us-
ing multiple tables. We have a many-to-many relationship between ORDERS
and ITEMS. We construct a many-to-many relationship from two one-to-many
joins used back to back. Clearly what we need is a table to put in between
ORDERS and ITEMS which allows us to model the relationship. A reasonable
name for this table might be ORDER/ITEMS and the three relevant tables would
look like this:

OrderNo EmployeeNo CustomerNo Desk Lamp Chair Table
1 1 2 1 1
2 4 1 1
3 1 3 4 1
4 2 4 1 1 1
5 3 2 1 1
6 2 4 1 1
7 2 2 1

BAD-ORDERS-TABLE-2

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 2

ORDERS

14 • How are relationships modeled?

105

These three tables contain all of the information that is included in the two
poor solutions quoted above, so Harry gets his four chairs to go with his ta-
ble. In addition, this solution solves the problems inherent in the other solu-
tions (or rather, it doesn’t introduce the problems in the first place).
There is no wasted space in the tables: all of the fields in all of the records are
complete.
There is no artificial restriction on the number of different items that can ap-
pear in a single order. Adding a lamp to an order which held only chairs sim-
ply means adding a single row to the ORDER/ITEMS table.
Finally, if we add another item to our product range, we simply add a row to
the ITEMS table. We don’t have to alter the structure of the ORDERS table or any
other table.
So, we have improved the flexibility of our ordering system but what has all
of this got to do with multiple fields in primary keys?

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
2 3 1
3 3 4
3 4 1
4 1 1
4 2 1
4 3 1
5 2 1
5 3 1
6 2 1
6 4 1
7 1 1

ORDER/ITEMS

ItemNo Supplier Price Item
1 Harrison $235.00 Desk
2 Ford $350.00 Lamp
3 Ford $234.00 Chair
4 Harrison $415.00 Table

ITEMS

14 • How are relationships modeled?

106

Well, ORDERS.OrderNo has to be a primary key, ensuring that each order has a
unique number. Similarly, ITEMS.ItemNo must be a primary key. However, nei-
ther OrderNo nor ItemNo on its own can be the primary key in the table
ORDER/ITEMS; instead, the primary key must be composed of these two fields
used together. If both are used then the table can have identical values in the
OrderNo field, as it can in the ItemNo field like this:

but the following is forbidden because of the identical values in the second
and third rows of the primary key column:

This actually matches reality very well, since the order should not have the
same item appearing more than once. Instead the NumberOfItems field should
be used to record multiple instances of an item in an order.

General lessons about joins
The discussion about many-to-many joins has covered a lot of ground, so it is
probably worth pausing to highlight some general points.

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
2 3 1
3 3 4
etc. etc. etc.

ORDER/ITEMS

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
1 4 2
2 3 1
3 3 4
etc. etc. etc.

ORDER/ITEMS

14 • How are relationships modeled?

107

Add flexibility by adding records, not fields
The solution discussed above for allowing multiple items per order provides
a high level of flexibility. You can add items to orders, change the number of a
particular item on a given order or add to the range of items without altering
the structure of a single table.
I said above that modern RDBMSs like Access allow you to alter the structure
of a table reasonably easily. This ability is essential during database develop-
ment but once the database is operational, changes of this kind should only
be undertaken in extremis. Remember that you will have based forms, que-
ries and reports on those tables. Every time you alter the structure of a table,
you will have to check all of these to see if they need to be changed as well.
So, as a general principle, any solution to a problem which will require you to
constantly change the structure of a table should be regarded with suspicion.
Not only is it likely to be troublesome, such a restriction almost certainly
means that you have overlooked a more elegant solution somewhere.

GUIs, not numbers
These joins constantly deal with numbers in primary keys and foreign keys.
We tend to use numbers because they are convenient (although you can use
text if you so desire). It is worth stressing that you aren’t expected to go to the
ORDER/ITEMS table and write these numbers into the table manually.
We use an attractive GUI interface which allows us to pick the customer’s
name from one combo box, the employee’s from another, the item from a
third,

14 • How are relationships modeled?

108

and then to type in the number of items required. The system will look after
the tedious job of writing the abstract numbers into the tables for us.
How such forms or, indeed, web pages that behave like forms, are con-
structed falls outside the remit of this book because the book is essentially
about the relational model, not about how to build interfaces in Access. How-
ever, just to show that it really isn’t difficult, look at the form called Orders in
the sample database CHAP14C which demonstrates just such a GUI.
There is more on this general subject of using a GUI to ‘protect’ the user of the
database from the rather abstract nature of the tables in the next chapter.

Less obvious objects
I told you that you can decide on the tables required in a database just by
identifying the real world object classes and giving each a table. Yet I have
just added one (ORDER/ITEMS) which isn’t an obvious object class. In my de-
fense, what I proposed earlier was simply a rule of thumb. This is about the
only major exception to it and it’s pretty easy to remember. If you can identify
a many-to-many relationship between two real world objects and there isn’t
an obvious object that sits in between those two objects, then you are proba-
bly going to need to create a table like ORDER/ITEMS.

A little obfuscation
So, joins and keys are easy to use and incredibly useful. However, it is vital to
remember that you are slowly but surely entering the world of the database
specialist. In that world, it is essential that you are able to describe what you
are doing in the obfuscative terms commonly employed by such people, oth-
erwise you won’t be treated with the respect that you deserve. Important
words here are Parent, Child, Own, Owned, Superior, Subordinate, Depend-
ency and Foreign key.
For example, the ORDERS table is oowned by the EMPLOYEES table and is there-
fore its cchild. ORDERS is ssubordinate to EMPLOYEES and also ssubordinate to its
other pparent, CUSTOMERS, which also oowns ORDERS and is therefore ssuperior
to it. All cchild tables have at least one fforeign key and because ORDERS has
two pparent tables, it has two fforeign keys – EmployeeNo and CustomerNo.
These fforeign keys establish a ddependency between the pparent and cchild; in
this case there are two fforeign keys, so there are two ddependencies.
There, I think that I managed to get in all of the important words. Note that
the foreign keys in ORDERS form relationships with primary key fields in each
of the parents. A little reflection should convince you that this is an essential

14 • How are relationships modeled?

109

prerequisite, since the parent table is always at the ‘one’ end of a one-to-many
relationship.
The relationships between the tables are shown below

and these are the six tables in the database.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

14 • How are relationships modeled?

110

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 2

ORDERS

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
2 3 1
3 3 4
3 4 1
4 1 1
4 2 1
4 3 1
5 2 1
5 3 1
6 2 1
6 4 1
7 1 1

ORDER/ITEMS

ItemNo Supplier Price Item
1 Harrison $235.00 Desk
2 Ford $350.00 Lamp
3 Ford $234.00 Chair
4 Harrison $415.00 Table

ITEMS

RoomNo EmployeeNo
1 2
12 4
23 1
24 6

ROOMS

14 • How are relationships modeled?

111

I shouldn’t make too much fun of the words used in database construction
since all specialist subjects acquire a verbal shorthand which is useful for
rapid communication. However, this shorthand should be used to speed up
communication, not to play a smoke-and-mirrors game of confusing non-
initiates and obscuring principles which are essentially simple. The important
point is to understand the principles; after that the words make sense and
follow naturally.
These tables are still not perfect, since, for example, the ITEMS table still contains re-
peated data (such as the name of the supplier). I’m leaving them in this slightly im-
perfect state since these imperfections will be used in Chapter 15 to illustrate why you
should remove redundant data from tables.

15 • Revisiting the big four – the synergy begins

112

Chapter 15

Revisiting the big four –
the synergy begins

In this part we have been looking at why single tables are bad, why multiple
tables are good and latterly at how you actually arrange the data into sepa-
rate tables. Now seems like a good time to look at the gains you get from
splitting up data in this way. At the same time we can revisit the four basic
components of a database that were covered in Part 1, namely:

Tables (briefly)
Queries (extensively)
Forms
Reports

and see how they work with multiple tables of data.
However, just before we do that, there is one more topic that we need to
cover – closure.

Closure
Closure is an important part of the relational database model, so much so that
it forms one of Ted Codd’s rules. You can, of course, go and read Chapter 24
but it’s more fun to derive the need for closure logically than just to accept it
as a rule. After all, closure isn’t important simply because it is a rule, it is im-
portant because it fixes an otherwise insoluble problem. So we’ll start with
the problem and show how closure fixes it. Hopefully by the end you will be
one of closure’s biggest fans.
For this chapter, I will be using tables from the database in CHAP15.MDB; how-
ever, the tables it contains are essentially identical to those in CHAP14C.MDB.

15 • Revisiting the big four – the synergy begins

113

The data has been split up into several tables and I have spent some consider-
able time and effort convincing you that this is a good thing to do because it
reduces repeated data and has other major benefits. I have also told you that
tables are the containers in which data is stored and that queries, forms and
reports can all be based on tables.
However, one major disadvantage arises when we combine this idea of split-
ting data between several tables with the idea of basing forms (for example) on
base tables. This disadvantage is neatly summed up in the form shown below
(called BadOrdersForm in CHAP15.MDB).

This is the table upon which the form above is based.

The very act of splitting up the data has left it in a highly human-unfriendly
state.
The solution is remarkably easy. Queries are perfectly capable of pulling to-
gether the information that we need from different tables (see below). Here is
the result of a query which pulls data from the three tables – ORDERS,

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 2

ORDERS

15 • Revisiting the big four – the synergy begins

114

EMPLOYEES and CUSTOMERS:

and here is a form based upon it.

Suddenly the data is readable again and the problem goes away. But (and it is
a big but) notice that the form above is based not upon a base table but upon
the answer table from a query. This is what closure is all about. In a relational
database, it is imperative that the answer tables generated by queries must
not only look like base tables, they must have the same behavior as base tables.
That is, they have to allow forms and reports to be based upon them without
complaining.
This relational property (that the answer to a query is a full and proper table
in its own right) is known as closure and it is much more important than it
first appears because it can be used in several ways.
Suppose that you have a table containing the details of 40,000 customers
world-wide. You might build a query which lists only those who live in the
USA and you might call that query USCustomers. Now suppose that you want
a list of all of the customers based in the USA who have spent more than
$10,000 with your company. Instead of querying the main CUSTOMER table,
you can query the answer table called USCustomers and look for those who
have spent more than $10,000, safe in the knowledge that this will only return

OrderNo Customer Employee
1 Sally Henderson Manny Tomanny
2 Brian Thompson Norma Lyzation
3 Harry McColgan Manny Tomanny
4 Sandra Wellington Rosanne Kolumns
5 Sally Henderson Cas Kade
6 Sandra Wellington Rosanne Kolumns
7 Sally Henderson Rosanne Kolumns

OrdersInformation

15 • Revisiting the big four – the synergy begins

115

US-based customers.
In theory there is no limit to the number of answer tables that you can use in
a stack like this. However, in practice I have rarely seen more than about four
or five queries stacked on top of each other.
Another example which makes use of closure is this form called Orders.

This form lets you see the information pertinent to each order. However, this
form is actually drawing information from several sources. One is the table
called ORDERS and another is the query called SubForm which is providing the
details about Item, Price etc. in the lower half of the form. This Orders form is
only possible because the query SubForm is producing an answer table which
is behaving just like a normal table.
Indeed, closure is such an important part of the relational model that we take
it for granted. Often you will hear people talking about a form which is based
on a given query, rather than saying that the form is based on the answer ta-
ble from a query. Closure will appear in the discussions which follow, par-
ticularly with regard to queries, forms and reports.

Tables
Base tables are the repositories of the data that you collect and store in the
database. The data you want to store should be split up into suitable sets of
tables (either formally or by rule of thumb) to reduce/eliminate redundant
data and to enhance data integrity. Moving to a multi-table database has
(reasonably obviously) increased the number of tables in the database but

15 • Revisiting the big four – the synergy begins

116

apart from that there is not much to say about them that hasn’t been covered
earlier in this part.

Queries (and a bit on forms)
The use of queries, on the other hand, changes substantially in a multi-table
database.
In a single-table database, queries are essentially used to subset the data. In
addition, they can be used to perform calculations on the data. These can be
very simple calculations – for example, the query shown below is ‘adding
together’ the data from first and last name fields to make the names appear in
a more readable way:

Calculations can also be much more complex mathematical manipulations
(summing, multiplying, performing standard deviation calculations etc.) as
discussed in Chapter 4 – Queries/Views.

15 • Revisiting the big four – the synergy begins

117

In a multi-table database queries can, of course, still be used to do all of this but
they are also used extensively to pull data together from the different tables.
For example, in the sample database in CHAP15.MDB, customer information is
stored in one table, employee information in another and order information
in a third. While splitting the data up into several tables ensures that this data
is stored efficiently, the data is not readily accessible in this state to the aver-
age user of the database. Queries can be used to pull the data together with
consummate ease; for example, the query above called InfoReOrders produces
this data which is much more accessible to the average user:

Note that this query is automatically making use of the information in the
primary and foreign keys to produce the data that we see in the answer table.
This is one of the major strengths of the relational database model. Once you
have set up the joins between the tables, queries can automatically make use
of them to provide the correct data.

OrderNo Customer Employee Item NumberOfItems Supplier Price
1 Sally

Henderson
Manny
Tomanny

Table 1 Harrison $415.00

1 Sally
Henderson

Manny
Tomanny

Desk 1 Harrison $235.00

2 Brian
Thompson

Norma
Lyzation

Chair 1 Ford $234.00

3 Harry
McColgan

Manny
Tomanny

Table 1 Harrison $415.00

3 Harry
McColgan

Manny
Tomanny

Chair 4 Ford $234.00

4 Sandra
Wellington

Rosanne
Kolumns

Chair 1 Ford $234.00

4 Sandra
Wellington

Rosanne
Kolumns

Lamp 1 Ford $350.00

4 Sandra
Wellington

Rosanne
Kolumns

Desk 1 Harrison $235.00

5 Sally
Henderson

Cas Kade Chair 1 Ford $234.00

5 Sally
Henderson

Cas Kade Lamp 1 Ford $350.00

6 Sandra
Wellington

Rosanne
Kolumns

Table 1 Harrison $415.00

6 Sandra
Wellington

Rosanne
Kolumns

Lamp 1 Ford $350.00

7 Sally
Henderson

Rosanne
Kolumns

Desk 1 Harrison $235.00

InfoReOrders

15 • Revisiting the big four – the synergy begins

118

As mentioned above, the answer tables that queries produce can also have
forms and reports based upon them.
So, queries can subset the data in tables, they can perform manipulations on
the data, they can draw together data from many tables and they can also
have forms and reports based upon the answer tables that they produce, all
of which makes them pretty talented. However, the multi-faceted nature of
their abilities raises a question. Suppose that you build a database along these
lines. The data is stored in the base tables, you use queries to pull the data
together and then base the users’ forms on the queries. The burning question
is “Can the users edit the data that they see on the form?” The answer is that,
with certain restrictions, yes, it’s perfectly possible.
This is an important point because most well designed databases make exten-
sive use of this facility so we’ll have a look at a series of examples which will
gradually increase in complexity.
The customer table in this example has been extended to contain the town in
which the customer lives. (We could get into an argument about whether this
information represents repeated data in this table but it is only for an exam-
ple.)

If we build a query which extracts only the Bostonians, we can then base a
form on that query:

CustomerNo FirstName LastName Town
1 Brian Thompson Boston
2 Sally Henderson Dundee
3 Harry McColgan Seattle
… … … …
103 William Johnston London
104 Agnes Keith Dundee
105 Robert Edgar Boston

CUSTOMERS

15 • Revisiting the big four – the synergy begins

119

Should we be able to edit the data shown here? Logically there is no reason
why not. True, we are only seeing a subset of the data but those records that
the form does show us would look no different if we based the form directly
upon the CUSTOMERS base table.
Any RDBMS worthy of the name will allow you to edit the data shown in this
form. The edits that you make will be written ‘through’ the query and will
end up in the base table. Thus if we change a customer’s name, that change
will appear in the CUSTOMERS base table. Access certainly permits this type of
edit.
Now, let’s make it a little more complicated. Suppose that you sell wood. It
comes in all different shapes and sizes, so you sell it by the cubic unit. You
don’t care if it is in a plank or a block, you simply multiply height by width
by depth and sell it by volume.
You store these dimensions in a table:

but you are smart enough not to store the volume in the table (Chapter 3 tells
you why you never store derivable data). Instead you get a query to work it
out for you and base a form upon the query:

Item Length Breadth Height
1 6 4 4
2 1 1 4
3 6 6 1
4 3 3 3
5 2 3 4
6 1 2 1
7 5 5 1

WOOD

15 • Revisiting the big four – the synergy begins

120

Some of the data in this form should be editable but not the text box which
shows the volume. A good RDBMS will allow you to edit any of the dimen-
sions since those edits can be written back to the underlying table. Indeed,
when you do so, it will update the volume information to reflect those
changes. However, imagine if you were allowed to edit the data in the vol-
ume text box. Which of the dimensions should alter to accommodate that
change? One of them or all of them? How is the RDBMS supposed to make
decisions like that? The answer is that it can’t, so this text box will be unedit-
able.
Now have a look at the query and answer table you met earlier:

15 • Revisiting the big four – the synergy begins

121

This query is drawing data from several tables and is manipulating some of
the data by ‘adding together’ the first and last name fields. (Combining text
fields in this way is known as ‘concatenation’).
Here is a form based on that query:

OrderNo Customer Employee Item NumberOfItems Supplier Price
1 Sally

Henderson
Manny Tomanny Table 1 Harrison $415.00

1 Sally
Henderson

Manny Tomanny Desk 1 Harrison $235.00

2 Brian
Thompson

Norma Lyzation Chair 1 Ford $234.00

3 Harry
McColgan

Manny Tomanny Table 1 Harrison $415.00

3 Harry
McColgan

Manny Tomanny Chair 4 Ford $234.00

4 Sandra
Wellington

Rosanne Kolumns Chair 1 Ford $234.00

4 Sandra
Wellington

Rosanne Kolumns Lamp 1 Ford $350.00

4 Sandra
Wellington

Rosanne Kolumns Desk 1 Harrison $235.00

5 Sally
Henderson

Cas Kade Chair 1 Ford $234.00

5 Sally
Henderson

Cas Kade Lamp 1 Ford $350.00

6 Sandra
Wellington

Rosanne Kolumns Table 1 Harrison $415.00

6 Sandra
Wellington

Rosanne Kolumns Lamp 1 Ford $350.00

7 Sally
Henderson

Rosanne Kolumns Desk 1 Harrison $235.00

InfoReOrders

15 • Revisiting the big four – the synergy begins

122

Should the data shown in this form be editable? The answer, now familiar, is
‘yes and no’. The name fields from the original base tables have been manipu-
lated (by concatenation) so they can’t be edited. Most of the data in the other
boxes can be edited, sometimes with interesting results. For example, the
word ‘Desk’ appears in several of these orders but it is stored only once in the
database (in the ITEMS table). Changing any entry from ‘Desk’ to ‘Lectern’ will
alter the entry in the ITEMS table. Thus all of the other records in the answer
table which refer to this entry in ITEMS will show ‘Lectern’ instead of ‘Desk’.
You can try this for yourself in the sample database CHAP15.MDB. It can be
done from the form but the effect is more impressive if you make changes to
the underlying answer table itself, where multiple records can be seen at the
same time. As soon as you change one of the records, a ripple of change runs
across the table as the other records update to reflect that change.
Intriguingly, if you edit the name of a supplier (e.g. change ‘Harrison’ to
‘Harisson’), some, but not all, of the records will update. If you follow the
connections back to the original table, you’ll find that the name of the sup-
plier is stored several times in the ITEMS table.

Earlier in the book, I pointed out that there was duplicated data in this sam-
ple table but allowed it to remain. Here it serves as (yet another) excellent il-
lustration of why redundant information in tables is to be avoided.
Finally, the OrderNo isn’t editable in this form but this is simply because it
happens to be an AutoNumber field in the underlying base table. Auto-
Number fields are inherently uneditable, even in the base table, so we would-
n’t expect it to suddenly become editable here.
We could go on looking at examples but the underlying rule should be be-
coming clear. Queries can be used to pull data together and forms can be
based on those queries. Whether the data that appears on such forms is edit-
able or not depends upon the nature of the query (or queries) which have
been used. Most RDBMSs provide lists of the different types of queries that
you can run and whether or not the resulting answer table can be edited.

ItemNo Supplier Price Item
1 Harrison $235.00 Desk
2 Ford $350.00 Lamp
3 Ford $234.00 Chair
4 Harrison $415.00 Table

ITEMS

15 • Revisiting the big four – the synergy begins

123

Some interesting research has been carried out into which classes of answer
table are inherently safe to edit and which aren’t. It turns out that there are
some queries for which a satisfactory ‘Yes’ or ‘No’ can never be given; (see
Chapter 24.) We don’t have to worry about them; RDBMSs generally take a
cautious view and if there is any doubt will default to rendering the answer
table uneditable.
Once again, just like in Chapter 4, we feel the need to mention Views at this point, if
only for completeness. These are essentially queries that happen to be stored on a data-
base server. If you have an interest in client-server databases take a look at Chapter
20. If not, ignore Views for now.

Forms
Forms also become more versatile in multi-table databases and some of this
increased functionality has been covered during the discussion on queries
(see above). However, the main benefits can be seen in this Orders form:

This form is drawing information from three tables. Several queries are being
used to feed data to the sub-form (which shows the items in the order) and to
the combo boxes (used for the fields labeled ‘Customer’ and ‘Employee’).
New orders can be constructed by moving to a blank record, selecting a cus-
tomer’s name, employee’s name, choosing the items for the order and enter-
ing the number purchased. Now, you and I know that underneath all of this,
the data is being stored as entries like:

15 • Revisiting the big four – the synergy begins

124

but the users simply see a form from which they can make choices.
This form sums up much about, not just how the relational model works, but
why it has become so omnipresent. The model requires that we split the data
up into separate tables and use all sorts of unhelpful numbers in primary and
foreign keys. We do all of this because it ensures that the data is more difficult
to corrupt. In other words, it is a pain but the pain is eminently worth the
gain, which is that the data is kept clean. We cannot expect the average user
of a database to cope with all of this complexity, but that’s OK because we can
use other aspects of the relational model (closure, queries etc.), together with
forms to shield the user from that complexity.

Reports
Not only do reports allow us to print out data, we can use them to summa-
rize and group the information in the database. In a multi-table database, we
can base the reports on multiple tables.
For example, given the information in the sample database, we might be in-
terested in which customers bought which items. We can generate a report
which draws information from CUSTOMERS and ITEMS. Such a report might
look like this:

OrderNo EmployeeNo CustomerNo
4 2 4

OrderNo ItemNo NumberOfItems
4 1 1
4 2 1
4 3 1

15 • Revisiting the big four – the synergy begins

125

This very simple report lists each item alphabetically and alongside each is a
list of the customers who have bought the item. The customers are sorted
alphabetically on surname.
A somewhat more informative report might show the amount each customer
has spent and on which items, part of which might look like this:

15 • Revisiting the big four – the synergy begins

126

The name of each customer, sorted alphabetically by surname, is shown on
the left-hand side, with a list of the items purchased, the price of each item
and the number of items purchased. Then the total spent on each type of item
is generated, with a total of each customer’s purchases at the bottom of the
list. A grand total of all customers’ purchases (not shown above) appears at
the end of the report.
Reports can be much more complex than these examples, using data drawn
from many tables. Subtotals, totals, averages and other summary statistics
can be generated from entries in the relevant tables to generate informative
reports on the data in your database.

16 • Integrity

127

Chapter 16

Integrity

Data integrity – is it worth the effort?
How accurate should the data in a database be? 100% would be good, of
course, but what is realistically acceptable in a database of reasonable size?
90%? 95%? The answer is that we need to go much higher than 95% for one
very simple reason.
Imagine we have a database of, say 10,000 patients in a hospital and that 95%
of the data held about each patient is accurate. Further imagine that the aver-
age question we ask of the data is one which spans a number of records –
“How many of the patients are male?”; “How many are over 40?”; “How
many are on insulin?” The number of records from which these queries draw
data will vary considerably but let’s imagine that the average number is a con-
servative 200.
What is the probability that any one query will return the correct answer?
Since each record that is used in the query has a 95% chance of being correct,
then, very simplistically, the chance that 200 be queried and that none contains
false data is 0.95 to the power of 200, which equals:

0.000035
which means 0.0035% of answers will be correct. To put that another way, well
over 99.99% of the answers will be wrong, very probably only slightly wrong,
but incorrect nevertheless.
Before anyone objects, this calculation is badly flawed for a variety of reasons.
Not the least is that although the average number of records might be 200, if
the distribution of records is very skewed with the majority of queries actually
only drawing data from 5 records, (and the odd one from 10,000), then the ac-
curacy of the answers improves dramatically. We can also argue that many in-

16 • Integrity

128

accuracies don’t matter. If the actual number of diabetic patients is 545 and
we get an answer of 547, this probably won’t alter our plans for ordering in-
sulin.
I agree with these arguments and I would hate anyone to take these figures as
definitive or even particularly accurate. What they are intended to show is
that, contrary to what many people appear to believe, 95% accurate data does
not give you 95% accurate answers: the actual figure will be much lower than
this. This makes it imperative that you strive to ensure that the data in the
database is as accurate as you can possibly make it. In practice, the effort is
worth it because if you can improve the accuracy of the data to 99%, then us-
ing the same very simplistic measure, the probability of a correct answer
rockets up to 0.13, meaning 13 % of your queries will return correct answers.
Increase the accuracy up to 99.9% and you get 0.82, so 82% of the answers
will be correct.
Striving for data integrity is well worth the effort. Now we’ll have a look at
the main types of data integrity errors that can arise.

Types of data integrity error (and some cures)
Data integrity is a general term which refers to several processes that keep the
data in your database error-free (or as close to error-free as we can get). Very
broadly there are four types of integrity error that can occur in a database.
1. Errors in unique data within a single field. You can mis-enter unique data,

such as a customer’s name, into a single field. For example, you could
type ‘Smath’ instead of ‘Smith’ into a LastName field. The database can-
not realistically be expected to detect or prevent this kind of error.

2. Errors in standard data within a single field. You can mis-enter standard
data, such as a customer’s title into a Title field. Suppose that you nor-
mally enter ‘Prof’ as the title for a Professor but for a few of them you
happen to use the title ‘Prof.’ (which has a period after the ‘f’). When
you search the database for all customers who have the title ‘Prof’, you
will certainly find them all but you will not be finding all of those cus-
tomers who are Professors. This differs from the example given above
for a last name only because the number of possible titles is small and
readily definable. The difference is significant because the database can
easily be designed to eliminate this second type of error.

3. Errors between data in different fields. Suppose that you record both the
date of birth of your employees and their date of employment. Clearly

16 • Integrity

129

if the date of birth for a given employee is greater (that is, later) than
their date of employment, an error has been made during data entry (or
else you have very odd employment rules!). We can use a type of data
checking to detect this sort of error at the time of entry and ensure that
it never gets into the database. In addition, there is nothing to stop us
from making the checking more useful.
For example, if we assume that you don’t employ under-age workers,
then any entry which has a date of birth less than 16 years before the
date of employment must be an error. If we understand the rules of the
business for which the database is designed, we can set up data integ-
rity rules which look for data which contravenes those rules. Such rules
are known, perfectly reasonably, as ‘business rules’.
Note that the fields concerned in this type of data integrity check are
often in the same table but don’t have to be. For example, you might
want to ensure that the value of an order (stored in an ORDERS table)
never exceeded a customer’s credit rating (stored in a CUSTOMERS table).

4. Errors between keys in different tables affecting referential integrity. Finally
there is a class of error that occurs between different tables, more spe-
cifically between the values that are stored in primary and foreign keys.
The system which controls (and prevents) this type of error is known as
referential integrity. If a value appears in a foreign key it must also ap-
pear in the primary key. This sounds straightforward and it is, but there
are several cases where the designer of the database (that’s you!) has
several choices, each of which has a different consequence.

Now we’ll have a look at the four types of error in more detail.

Errors in unique data within a single field
There’s not much advice I can give you here except, of course, be very careful;
sadly the database can’t help when you enter erroneous data of this type. The
good news is that it can help with the other three which are generally more
serious anyway.

Errors in standard data within a single field
Given data that is essentially drawn from a small pool of possible values (for
example, Ms., Mrs., Miss, Mr., Dr., Prof.) it is perfectly possible and highly
desirable to ensure that no ‘rogue’ values (such as Professor or Missus) are
entered. Most RDBMSs provide mechanisms to ensure this. Such control can
also be applied to numerical data. For example, you can specify that a value,
such as a height, must be between 1.5 and 2.5 meters.

16 • Integrity

130

As an example of numerical control, we could specify that the NumberOfItems
field in the ORDER/ITEMS table must contain a value between 1 and 100:

We can also specify a set of values for the Title field in CUSTOMERS in much
the same way:

16 • Integrity

131

The actual validation rule in this case is:
In (“Ms.”, “Mrs.”, “Miss”, “Mr.”, “Dr.”, “Prof.”)

These screen shots show the integrity control being applied at the table level.
It can also be applied on the form used to enter the data; the application de-
signer can provide a combo box which only allows the ‘acceptable’ values to
be selected:

This combo box can be made to work in conjunction with, or independently
of, the control applied at the table level.
The pros and cons of these two approaches (that is, whether control should
be applied at the form level or the table level) are discussed towards the end
of this chapter.
We need a general term for the set of values that are acceptable in a given
field. That term is ‘domain’ and we go into more detail about domains in
Chapter 30.

Errors between data in different fields
In Access errors between fields can most easily be controlled at the form level.
Within a form it is relatively easy to set up quite complex checks which con-
trol data entry. As an example, this form, shown in the design stage, checks to
see if the employment date is approximately 16 years after the person’s date
of birth:

16 • Integrity

132

In practice, you need to be careful setting up checks like this one. For a start,
365.25 x 16 doesn’t always check for exactly 16 years difference between two
dates. However, an exact check is more complex to set up and this one is go-
ing to be good enough in most cases. More importantly, this check operates
only on the employment date, which means that it assumes that the date of
birth has been entered and will not be changed after the employment date is
entered. In other words, a user of the database can circumvent this check by
filling in a date of birth such as 1 Apr 1960, filling in an employment date of 1
Apr 2000 (which is more than 16 years after the date of birth) and finally
changing the date of birth to 1 Apr 1990. As the database designer, you are
expected to foresee this sort of devious behavior on the part of the user and
trap it. Depending upon the complexity of the checking that needs to be
done, you may have to use a snippet of code (see Appendix 1).
In other database engines, particularly client-server ones, you can also use
Triggers to manage (and hopefully limit) this kind of error. Triggers don’t ap-
pear in Access, but it is still useful to know about them because you may use
other database engines in the future. There’s more information about them in
Chapter 22.

16 • Integrity

133

Errors between keys in different tables – referential integrity
This subject has been discussed in some detail in Chapter 14 but just in case
you aren’t reading this book sequentially (which I rarely do with books) we’ll
look at it again briefly.
This is the type of data integrity control which looks after integrity between
tables. Why do you need to check integrity between tables?

The field EmployeeNo in parent table EMPLOYEES is a primary key so it only
contains unique data. By contrast, the field EmployeeNo in child table ORDERS
is a foreign key and it can contain duplicate values. In fact, the more success-
ful your employees, the more frequently their EmployeeNo appears in the
ORDERS table. We want a so-called ‘one-to-many’ relationship to exist between
these fields: one number for each employee but many entries for that em-
ployee in the ORDERS table.
In terms of data integrity, it may not matter if an employee appears in the
EMPLOYEES table but not in the ORDERS table; perhaps they are new to the
company and are still undergoing training. However, data integrity is vio-
lated if the opposite condition is allowed to arise, whereby a value (such as 9)

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Manny Tomanny 12 Apr 1966 01 May 1999
2 Rosanne Kolumns 21 Mar 1977 01 Jan 2000
3 Cas Kade 01 May 1977 01 Apr 2002
4 Norma Lyzation 03 Apr 1966 01 Apr 2002
5 Juan Tomani 12 Apr 1966 01 Apr 2002
6 Del Eats 01 May 1967 01 May 2004

EMPLOYEES

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 2

ORDERS

16 • Integrity

134

appears in ORDERS.EmployeeNo which does not appear in EMPLOY-
EES.EmployeeNo.

So we need to actively manage the numbers that appear in the key fields, al-
ways ensuring that any number which appears in a foreign key already exists
in the corresponding primary key. In theory we could ask the people using
the database to be very careful when they enter data but that’s somewhat unre-
alistic. So that, in a nutshell, is referential integrity; in practice there are two
broad ways in which we can enforce it.

Declarative and procedural referential integrity
For once the names seem reasonably appropriate: ‘declarative’ means that
you declare to the database engine that you want it to enforce referential in-
tegrity and henceforth it will go ahead and do it. Once you’ve opted for the
declarative method, the engine takes responsibility for referential integrity
and handles everything.
The alternative, procedural, means that you have to write specific procedures
yourself in order to enforce referential integrity. These procedures are typi-
cally implemented using triggers (again, see Chapter 22 for more on triggers).
You retain responsibility for handling all referential integrity issues.
The procedural approach involves you in a lot more work so an inevitable
(and sensible) question at this point is “Why would anyone ever choose any-
thing other than the declarative method?” The answer is that declarative ref-
erential integrity is easy for database designers (you and me) to use but it is
difficult for the database engine designers (the guys at Microsoft who write
Access) to build into the engine. So the early versions of some database en-
gines only supported the procedural method; declarative was added later.
Access, being a more modern database engine, has always supported declara-

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 9 2

ORDERS

16 • Integrity

135

tive referential integrity (but it doesn’t support all the different flavors, see
below).
Procedural enforcement used to be very important because it was the only
way of ensuring referential integrity. Now it’s a dying art form. You may hear
about it and even see it on odd occasions, but generally speaking you would
need a very good reason not to use the declarative method, and good enough
reasons are very rare.

Flavors of declarative referential integrity
So, referential integrity keeps the values in foreign and primary keys in syn-
chronization but it turns out that most database engines will offer you several
different flavors of referential integrity.
Why do we need different flavors? Well, it all comes down to the fact that we
want to build databases that accurately model what happens in the real
world.

On Delete Cascade
Consider the tables shown here:

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4

ORDERS

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
2 3 1
3 3 4
3 4 1
4 1 1
4 2 1
4 3 1

ORDER/ITEMS

16 • Integrity

136

Suppose that we record all orders as soon as they are placed. Inevitably some
are later cancelled. If the orders in the Order table have no sub-orders (that is,
corresponding records in the ORDER/ITEMS table), then normal referential in-
tegrity will happily allow the order to be deleted. But if we try to deleted or-
der number 3 (which has child records) the standard flavor of referential in-
tegrity will simply refuse to allow us to do it because doing so would leave
two orphan records in the ORDER/ITEMS table (they would be child records
without parents). So in practice, every time an order is deleted, the user must
first delete all of the associated sub-orders. This is fine as an occasional job
but very tedious if orders are frequently deleted.
It is for precisely this kind of reason that we have different types of referential
integrity and the one we would use in this case is called ‘On Delete Cascade’.
We have just described this type of referential integrity in terms of the busi-
ness rule it would be supporting but we can also describe it in terms of how it
actually works; in other words in terms of the key values. On Delete Cascade
says that if we delete a record in the parent table then all of the records in the
child table that reference it are also automatically deleted. The delete cascades
down from the parent to the child.
How do you apply this kind of referential integrity? If you double click on a
join between two tables in the Relationship editor and select Edit Relation-
ship…, a dialog opens up:

16 • Integrity

137

You can select Enforce Referential Integrity in the dialog box. If you do select
that, one of the other options you can then choose is Cascade Delete Related
Records.
Access uses the term ‘Cascade Delete’ rather than ‘On Delete Cascade’ but the
functionality is identical.
How do you know when to select this type of referential integrity? Simple: it
depends on the requirements of the users. If they have a business rule that
says “Orders must not be deleted if sub-orders have already been entered”,
then On Delete Cascade is inappropriate. If not, then it may well be the refer-
ential integrity flavor you need for this join.
The important point here is that we are matching the type of referential integ-
rity to the business requirements. For other business requirements we have
other flavors of referential integrity.

On Delete Set Null (or Set Default)
Suppose that your ordering system is an internet-based one. People fre-
quently start to create an order, put items in the shopping basket but never
actually complete the order. You want to delete the order but for analytical
reasons you want to keep track of the items that are selected for incomplete
orders.
In database terms this means you want to be able to delete the parent record
but keep the children. You can use a type of referential integrity called On
Delete Set Null which sets the foreign key values of the children to null when
the parent is deleted. (This will clearly only work if the foreign key field has
been set to accept null values. See below for more about nulls in foreign key
fields.)
Many database designers avoid nulls where possible (see Chapter 31) and so
alternatively you can set the foreign key to some chosen default value. The
value chosen would have to be one that existed in the parent table. It would
be common in a case like this to set up a dummy order with an unusual order
number (e.g. 10,000,000) and use this as the default value.

On Delete No Action
This is the official description of what we have been referring to as standard
referential integrity. In other words, if you try to delete an order and it has
child records, that the deletion of the parent will not be permitted. You can, of
course, delete the child records manually first, in which case the deletion of
the parent will be permitted.

16 • Integrity

138

Summary of On Delete
So that covers the possible actions we can have if the user tries to delete a par-
ent record – we can cascade the deletion, we can set the child to a null (or a
default value) or we can stop the deletion of the parent. All of these are rea-
sonable courses of action and all maintain referential integrity.
But the user can also try to update an existing primary key value in a parent
table. Under that circumstance we can, again, cascade the change, set a null or
default or refuse the update. For the sake of completeness we feel we ought to
spell these out but you may already have got the message so feel free to fast-
forward briefly at this point.

On Update Cascade
Suppose that for EmployeeNo you use a government-generated unique identi-
fier – some kind of Social Security number. A new employee arrives who has
forgotten this crucial piece of information. This isn’t a crime (depending upon
the country in which you live) so you insert a temporary number. Finally, af-
ter several months, the person’s paperwork arrives and you can enter their
‘proper’ unique identifier. But wait. Referential integrity will refuse to allow
you to change the temporary number in the EMPLOYEES table if there are en-
tries in the ORDERS table which use that number. Enter (stage left) On Update
Cascade, which will permit you to make this change. It manages to do this
without upsetting referential integrity because it will obligingly locate and
change all the records in ORDERS from the temporary to the new number.
If you set On Update Cascade for a join then updates to the primary key are
allowed and the child values in the foreign key are automatically updated so
that they remain in step with the new parent value. In other words, the
change to the parent value is cascaded down to the children.

On Update Set Null (Default)
When the user updates a parent value then the foreign key values in the child
records are set to null or to a chosen default value.

16 • Integrity

139

On Update No Action
This is the vanilla flavor of referential integrity. Updates to primary key val-
ues in the parent table are refused if there are child records.
Are there options we can set for changes to foreign key values?
We’ve talked about six flavors:

On Delete
— Cascade
— Set Null (Default)
— No Action

On Update
— Cascade
— Set Null (Default)
— No Action

These all refer to the changes that users can make to the primary key values,
not the foreign key values. The reason for this is simple – referential integrity
doesn’t allow for much choice when it comes to foreign keys. If we delete a
foreign key value (i.e. a record in the ORDERS table) we can’t possibly be of-
fending referential integrity. If we insert a new record (with a new foreign
key value) or update an existing one, the new value that appears in the for-
eign key must be one that already exists in the primary key field. If it isn’t, the
change is refused. There is really no discussion.

Nulls in foreign keys
Foreign key values are, according to referential integrity, supposed to point to
existing primary key values. Nevertheless, many database engines will allow
you to enter null values into a foreign key. In fact, Access allows this by de-
fault.
Now, on the face of it, this is a little weird. True, we couldn’t say it is pointing
to the wrong parent record, it is just that it isn’t pointing at any parent record.
No problem. First of all we’ll show you how to fix the problem and then we’ll
try to convince you that it wasn’t really a problem at all, just an opportunity.
To fix it, you simple edit the child table and set the Required property of the
foreign key field to be true.

16 • Integrity

140

‘Required’ means that a value is required in the field, so nulls are excluded.
As to why this isn’t really a bug, we need to remember that referential integ-
rity isn’t some theoretical abstract, it is there to ensure that the databases we
build store data that accurately reflects what happens in the real world. In
other words, our databases have to be able to cope with the rules that apper-
tain to our business processes.
Imagine a business where Orders are always credited to Employees. In this
case we would set the properties of the foreign key field so that it did not al-
low nulls to be entered. Now imagine a company where most orders are
credited to an employee, but some aren’t. In this case we can allow nulls in
the foreign key field.
So, null values in foreign key fields are perfectly acceptable because they en-
able us to model a particular type of business rule.
Null values, as discussed in Chapter 31, can cause problems in practice. Sup-
pose that you want some orders not to be credited to specific employees and
you also want to avoid using nulls. In this case you could set up a record in

16 • Integrity

141

the Employee table where the employee name was “No Employee” and give
it a primary key value (say, 1). You could then have orders that are not cred-
ited to a particular employee by inserting the value 1 in the foreign key field
of those orders.

However, this is certainly not obligatory and it may bring associated prob-
lems, such as what you enter for the date of birth of Employee number 1. The
main point here is that by allowing null values in foreign keys, the database
engine is allowing you to choose the solution that is best suited to your busi-
ness requirements.

Access Support
Access supports all of the flavors described here apart from:

On Delete
— Set Null (Default)

On Update
— Set Null (Default)

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 93

ORDERS

EmployeeNo FirstName LastName
1 No Employee No Employee
2 Rosanne Kolumns
3 Cas Kade
4 Norma Lyzation
5 Juan Tomani
6 Del Eats

EMPLOYEES

16 • Integrity

142

If you tick the box for Enforce Referential Integrity then you get:
On Delete

— No Action
On Update

— No Action
You can then select either or both of the Cascade options which give you:

On Delete
— Cascade

On Update
— Cascade

These options in context
If this has made sense so far, try this question. Is there any logical reason why
you shouldn’t be allowed to set, say, both cascade delete and cascade update
on the same join?
You have, of course, thought about it carefully and come to the conclusion
that the answer is ‘No’. That is, no, there is no reason why you can’t have
both. And your answer is correct. Perhaps you have an ordering system that
uses order numbers generated by a complex interaction of customer name,
date etc. You want to be able to delete orders which are cancelled and you
might also need, occasionally, to be able to give an order a temporary number
if some of the other information is unavailable. I’m not suggesting that this is
a good or bad idea, just that if you come across a situation where both forms
of cascade are desirable, there is no data integrity reason why you shouldn’t
be allowed to set both.

16 • Integrity

143

Other integrity issues
It is worth remembering that in applying data integrity mechanisms, we are
usually trying to protect the data from the users of the database. This is not
meant to imply that database users are normally malicious or mischievous, it
is simply that they will often enter data which seems to them to be reasonable
but isn’t in terms of the database (the ‘Prof.’ vs. ‘Prof’ problem as discussed
earlier). Before we discuss where the integrity rules, checks and controls can
and should be placed in the database, it is worth pointing out that RDBMSs
often provide other security mechanisms which can be used in conjunction
with data integrity mechanisms. For example, it is possible and often desir-
able to limit the access that a user has to a database. We often limit this access
to just the forms that have been designed for the users; we deny them access
to the base tables and also deny them the ability to create new forms. As dis-
cussed below, if we do this, it can have a profound effect on the way in which
we then use other types of data integrity enforcement.

Integrity – where should you set it?
We can consider a database to be composed of layers. At the bottom layer are
the base tables, above those are the queries (or views, depending on your
RDBMS) which extract and manipulate the data in the base tables, and then
there are the forms which are based on the queries and occasionally directly
on the base tables:

16 • Integrity

144

Where, within this model, should integrity checking be applied?
It’s a pretty fundamental question. If integrity checks are applied at the base
table level then they propagate upwards. That is to say, if you apply a data
integrity control at the base table level, then all of the forms which are based
on that table (or on queries that are based on that table) will inherit that integ-
rity control. To put that another way, if you apply data integrity at the table
level, then that integrity cannot be subverted by, for example, creating a new
form. The only way to enter data into that table which disobeys the integrity
rule is first to remove the rule from the table.
If, on the other hand, you apply data integrity at the form level, then any new
form that is created will not apply the same integrity rules automatically.
In general it is best to apply data integrity rules in such a way as to ensure
that:
1. they cannot be subverted
2. the workload required to maintain the database is kept at a minimum.
In turn, this leads to a more general rule which says that data integrity rules
are best applied at the table level whenever possible because that makes them
more difficult to subvert. However, it is only a general rule and there are
times when it should be ignored.
Consider a particular company that sells, say, computers. The company gives

16 • Integrity

145

discounts and sales people are allowed to give up to 5% at their discretion.
Supervisors can give up to 10% while managers can give up to 50% (in times
of dire need to pacify customers already dissatisfied with a previous prod-
uct). Clearly the upper limit is 50%, but if we simply set that at the table level,
a sales person might accidentally give a discount greater than 5%. The answer
is to give each type of employee a different form, each with a different integ-
rity rule.
The bad news is, of course, that this integrity could be subverted if the users
of the database were able to access the base tables directly. However, if you
know from the start of the design process that users will not be allowed to
access the base tables directly (see above), then this is no longer a considera-
tion. You are free to apply data integrity at the form level if it is (as in this
case) to your advantage.
As a final general rule, use your common sense. If you can’t imagine any rea-
son to allow a rule ever to be subverted, then place it at the base table level if
that isn’t going to impose a maintenance problem (which it usually doesn’t).
However, there are times when it is a positive advantage to place a data in-
tegrity rule at a higher level and if you can see such an advantage, go for it.

16 • Integrity

146

Chapter 17

Summary of Part 2

This is an exceedingly short chapter which simply summarizes what Part 2 is
all about and points the way to the next part.
I sincerely hope that Part 2 has convinced you that single tables are fine for
very simple data but catastrophic for more complex data, which is the sort of
data that most people actually want to store and manipulate.
The relational model gives us the mechanisms we need to store and manipu-
late complex data in a way that ensures we will be able to query it later and
get out the answers that we need. Part 2 outlines most of what you need to
know about the relational model to get started building databases.
If you have read and understood Part 2, I reckon that you are more qualified
than most people to construct multi-table databases for single users. Ah – you
noticed the qualification that slipped in there; that ‘for single users’ bit. So far
we have only considered databases which run on a stand-alone PC and can
therefore be used by only one person at a time. Part 3 outlines the ways in
which a single-user database can be expanded to allow multiple users to ac-
cess it at the same time.

16 • Integrity

147

Part 3

Database Design
& Architecture

18 • Database Design

149

Chapter 18

Database design

Designing databases – user, logical and physical models
The process of database design is typically separated out into three different
layers:

User
Logical
Physical

The idea of splitting it like this arose very early in the development of data-
bases. These three layers were first described in an interim paper published by
the ANSI/SPARC Study Group on Data Base Management Systems in 1975.
It is certainly not essential to remember that ANSI stands for American National
Standards Institute and SPARC for Standards Planning and Requirements Commit-
tee.
It is easier to introduce these layers not in terms of what they do, but in terms
of the problem they were introduced to address. The broad problem turns out
to be very easy to state – database design wasn't working.
At that time, only very large, important and wealthy organizations could af-
ford to develop databases (governments and very serious corporations). What
they discovered was that most database projects were failing or, at best, going
way over budget and timescale. We are talking millions of dollars and many
years here. So, the ANSI/SPARC committee was set up to try to find:

why the projects were failing
a solution that could be applied generically to all database projects

150

18 • Database Design

Two conflicting views of the same database – user and physical
The committee realized that the fundamental problem with database design
at the time was a lack of communication.
Users who want a database often have a model in their brains of what they
want.
Incidentally, we are aware that the term ‘user’ is sometimes used in a mildly pejora-
tive sense. We decided to continue to use the term because it is now very firmly em-
bedded in the literature of database design (as in ‘user view’ etc.) but it certainly car-
ries only positive connotations here. In a database design context, users are the people
who employ us. Without them, we would be out of work.
Users tend not to think about databases in a formal sense; rather they tend to
think in terms of the information that they want to appear on screen in order
to allow them to complete their work.
“I want to be able to enter details about all the products I have to sell.” They
also think in terms of the functionality that they want. “I also want to be able
to manage the orders that customers place with me.”
Then there are the database designers (DBDs) who essentially think in terms
of database structures. Relational database designers tend to think in terms of
tables, columns, rows, primary keys, referential integrity, clustered and non-
clustered indexes (see Chapter 34), etc.
The problem comes when these two talk about the database. There is exactly
and precisely zero common ground between them. The following
(admittedly imaginary) conversation sums up the problem.
Client: “Hi, we need a database to store information about our real estate
business.”
DBD: “Great, what sort of tables did you have in mind?”
Client: “Uh, no, not the content of the houses, just the property itself.”
DBD: “Do you want fields with that?”
Client: “No, not all houses come with land. But the new system does need to
tell us which houses are on the property index.”
DBD: “Clustered or non-clustered?”
Both groups have a perfectly valid model in their heads of the proposed data-
base. The user’s model is expressed in terms of the business functionality that
they want; the DBD’s model is expressed in terms of the way in which the
database should be physically constructed. The former is very business ori-
ented and relatively un-formalized, the latter is very structural and extremely

18 • Database Design

151

formal.
So, we may have a communication problem but at least we now understand
the problem and defining these two models, the User model and the Physical
model, is a large step on the way to solving it.
In practice these models can also be known as views or layers. You will hear people
using the terms more or less interchangeably – talking about the ‘user view/layer’ as
well as ‘the user model’. This isn’t a problem; indeed it can be useful. Sometimes it
seems more natural to talk about the different layers, at others the user’s view of the
database or the model that they have formed seems better.
Now also seems like a good time to break it to you, just for the sake of completeness,
that the ANSI/SPARC committee actually used the terms External (in place of User)
and Internal (in place of Physical). It also used the term ‘Schema’ in place of ‘View’…
but you really don’t have to remember this either because the modern terms are much
more memorable.
It would be difficult to imagine two groups with more different views of the
same database, and yet it is these two very groups that have to work together
to produce a database. This was essentially the problem that the ANSI com-
mittee identified. The solution it proposed was inspired. Rather than attempt
to make either group modify its view, which would have been disastrous
since both views are perfectly valid, it proposed the introduction of a third
model that sits between the two and acts as an interpretation layer. This is
called the logical model (or ‘conceptual schema’ in ANSI/SPARC-speak).

The Logical model – overview
The logical model concentrates on formalizing the user’s view of the data-
base, turning it from a relatively unstructured state into a definitive descrip-
tion of the user’s requirements. Once this has been done, it is relatively easy
to map this onto the physical model that the DBD is so keen to produce. Logi-
cal models can be constructed in a variety of ways, but one of the most com-
monly used is called ER (Entity Relationship) Modeling. The ER model gets
its name from the fact that it records the entities that are identifiable in the
user’s requirements and the relationships that exist between them.
During a process called Business Requirement Analysis, business analysts
(BAs) talk to the users and examine the user model that exists in the users’
heads. With the co-operation of the users, this is formalized into an ER model
which essentially forms the logical model.

152

18 • Database Design

It is important to realize that this logical model is based entirely upon the us-
ers’ requirements. There is no input from the DBDs. Indeed, at this stage, not
only has it not been necessary to decide which database engine the database
will run upon (DB2, SQL Server etc.), it hasn’t even been necessary to chose a
database model (relational, hierarchical etc.).
Once the logical model is complete, it is handed over to the DBDs. At this
point a decision is made about the database model and (most commonly) the
database engine that will be used. In the logical model the DBDs receive a
well understood, formalized description of the business requirements
(entities, relationships etc.) that can be mapped relatively easily onto the
world that they understand (tables, joins etc). DBDs also add a huge amount
of detail that is of no interest to the users (data types, primary keys, indexes
etc.). The logical model gradually turns into the physical model that the
DBDs wanted in the first place.
Let’s take a very simple example. The user model is:
“I want to be able to enter details about all the products I have to sell and I
also want to be able to manage the orders that customers place with me.”
This might be formalized into an ER model that has three entities:

Products
Customers
Orders

The final physical database design might consist of four tables:
Product
Customer
Order
Order/Details

with appropriate joins between them, referential integrity established, in-
dexes applied as appropriate and so on.

More about the logical model
ER modeling is essentially a specific way of representing the logical model.
What the business analyst and the user need is a common vocabulary for dis-
cussing and describing the user model and that’s just what ER modeling pro-
vides. In order to create the logical model, the user need only understand
three new terms and concepts. These are Entities, Attributes and Relation-

18 • Database Design

153

ships.
An entity can be thought of as an object in just the same way as described in
Chapter 12 where we cover the identification of objects as part of the process
of determining what data should go in which table. A customer is an entity, as
is an item for sale and an order.
An attribute is a piece of information about an entity. A customer entity will
have an address, a phone number and a fax number amongst other things,
while an item entity may have attributes such as size, color and country of
manufacture.
A relationship is, as you might guess, a connection between entities: custom-
ers place orders, orders comprise items and so on.
We said earlier that the problem with building a database is essentially one of
communication – as part of the process to overcome this problem the users
have to learn to think and talk about their business in terms of entities, attrib-
utes and relationships.
So, using this new vocabulary, the BA and the user can discuss the project
and then build up a more formal description of how the business works. The
user will typically still imagine the database in terms of the user model but
translates that into entities, attributes and relationships. For instance, the user
might say that a customer can place one or more orders and that orders can
be for one or more items. The BA asks questions to further refine the user’s
understanding (is more than one customer ever associated with an order, for
example) and should end up with a clear picture of what the user has in
mind. The process has the major benefit of encouraging the user to think
more precisely about the business process, about the data to be stored and
how the various elements of data are related. Often users have never had the
need or the motivation to formalize the picture they hold in their heads and
this process can often be quite informative about the business process itself. It
is this formal description, couched in terms of entities, attributes and relation-
ships, that makes up the logical model.
The creation of the logical model will almost invariably be an iterative proc-
ess. Things will be forgotten, exceptions will surface and changes are inevita-
ble – that’s a perfectly normal progression. The BA must keep on asking perti-
nent and searching questions to extract as much information as possible to
feed into the model.
When the logical model is as complete as possible, another important benefit
is available to both BAs and users. The logical model can, and should, form
part of the specification that is signed off by both parties as a step towards a

154

18 • Database Design

fully documented project. Unless this is done there is no defense on either
side against changing minds, fading memories or jumping to conclusions.
To summarize so far, the user model is how the users see the database. The
logical model is a more formal description, couched in terms of entities, at-
tributes and relationships. Both users and database designers can understand
this model. It also, quite deliberately, lacks a huge amount of detail that
would confuse the user. That detail is added in the physical model.

CASE tools
So far, all of this must sound horribly abstract. It must also sound extremely
tedious and time consuming. The truth is that, indeed, this used to be the
case. Back in the olden days when the ANSI/SPARC committee was rolling
out its ideas, all of this would have been done on paper. That really was tedi-
ous and the overhead that it added to a project was very high. Nevertheless,
it was well worth doing, particularly on a large project, because the risk and
cost of failure were also both high.
Since then life has become much simpler. CASE (Computer-Aided Software
Engineering) tools have been developed which allow us to perform much of
the donkey work on-screen. Interestingly, this not only makes the whole proc-
ess much faster, it also brings several additional benefits which may not be
immediately apparent. The easiest way to see these extra benefits is to step
through a typical database design process and see one of these tools in opera-
tion.
There is a range of tools from which to choose. Somewhat confusingly, they
are sometimes called ‘ER modeling tools’ which implies that all they can do is
help create the logical model. In fact, the better ones can often do much more
than this. An example of such a tool is Computer Associates’ ERwin (formerly
Platinum’s ERwin) so we’ll use that to demonstrate the process.
As a BA, you start by educating the user to think in terms of entities, attrib-

18 • Database Design

155

utes and relationships. Then you talk to them, long and hard, helping them to
translate the user model they carry in their heads into a logical model. Then
you sit at a computer, fire up a copy of ERwin and create a logical model
which might look something like this:

156

18 • Database Design

We can zoom in a little to see more detail:

Here we can see two entities – Order and Order Details. Examples of attributes
are OrderID, OrderDate etc. The relationship between the entities is shown dia-
grammatically by the line between them. The additions to this line (the circle,
the cross bar and the so-called crow’s feet) are there to represent detailed in-
formation about the join. In ERwin, double-clicking on the line opens a box
where this information can be altered; making alterations will update the rep-
resentation on screen. As you can see, a fair amount of detail can be contained
within this logical model. When you are a BA who is talking to the user it is
your job to find out exactly what sort of relationship exists between the enti-
ties and represent it accurately in the logical model.
Think about a question like “Do all orders have to have a product attached to
them?” If the user says “Yes” we would need to change the ‘cardinality’ of the
relationship to ‘One or More’ instead of ‘Zero, One or More’. Clearly it is es-
sential that you know what all of the symbols mean and it’s useful if the user

18 • Database Design

157

understands what some or all of them mean: this is often part of the educa-
tion process described above. (We talk more about this in the section on
Methodologies below but for now we’ll continue with the practical bit.)
So, let’s assume that the logical model is complete. How do you get to the
physical model to add the detail that the user won’t see? In terms of tools like
ERwin, it is just a combo box away. Up on the menu bar is a box where you
can select Physical Model to see more detail.

Here you can define the data types, add views such as the one called
Order_Subtotals shown here, add indexes – in other words, all of the structural
detail. Indeed, you can continue to flip between the two models with the
same ease. This enables the user to work with the familiar and fully under-
stood logical model and for the DBD to see the detail of the physical model as
necessary. Furthermore, the software ensures that a change made in either
model is reflected in the other. In other words, although the logical model
comes before the physical, there is no reason why the development of the two

158

18 • Database Design

cannot proceed to some extent in parallel.
And there is another important advantage of using a tool like this. Suppose a
BA and DBD design a database for a client, create it and the database goes
live. The one certainty about that database is that the user will, at some point,
ask for changes. Given that you have a model like the one we’ve shown, the
BA can discuss the changes with the user while showing them the logical
model even though the underlying physical model is stuffed full of detail.
And even this isn’t the best bit… but we’ll come to that in a minute, just after
we summarize the story so far.

Summary so far
There is a user model that lives in the head of the user. There’s a logical model
that formalizes the user model using a vocabulary that’s common to the user
and the database designer; this model is held in an ER modeling tool. In the
same tool is a physical model that describes how the functionality encapsu-
lated in the logical model can be translated into a database structure. There’s
a great deal more detail in the latter but it can be hidden from sight easily.
And what are the benefits of all this hard work? A formal description of what
the finished database is expected to do has been agreed by the user and the
BA. As changes occur as they inevitably will, modifications can be made to
the physical model that are automatically reflected in the logical model and
vice versa. This benefit alone can be of huge significance for both sides in-
volved in a project.

The final big advantage of CASE tools
Once the final version is agreed, the biggest and best feature of CASE tools
comes to light which is that they can generate database schemas automati-
cally. And what’s a database schema? In its broadest sense it’s simply a de-
scription of a database; more specifically it means a complete database de-
scription expressed in a formal language such as SQL (Structured Query Lan-
guage: in Chapter 29 we go into details about the querying part of this lan-
guage but the language also has commands for creating all of the parts of a
database such as tables, joins, indexes etc.).
At the press of a button, an ER modeling tool can generate a complete SQL
script which, when exported to the database engine, will build the entire da-

18 • Database Design

159

tabase structure for you, tables, fields, data types, keys, joins, indexes and all.
This means that as the BA and DBD work away, talking to the users and cre-
ating the logical and physical models, they are, at the same time, doing all of
the work necessary to create the database itself. When you finally want to cre-
ate the database, all you have to do is to throw the switch and it will be done
for you.
As detailed in Chapter 29, not all implementations of SQL are the same; just
as there are dialects in the English language, so there are SQL dialects. In
which flavor of SQL will the CASE tool write the database schema? It’s sim-
ple; you choose. If you plan to run the finished database on Oracle, choose to
generate an Oracle SQL schema; if you’ve gone for DB2, choose an IBM DB2
SQL schema.
“OK, you’ve convinced me, ER modeling tools are wonderful”.
They certainly are, but in order to convince you that I don’t have shares in
any company that sells them, let me tell you about their down side.
For a start, bear in mind that although they will automatically generate a da-
tabase for you, that doesn’t include the extra elements that lie outside the ba-
sic structure and which make up a complete application such as the forms
and reports that comprise the user interface.
Secondly, these tools are not yet perfect. The facilities they offer may not be
matched by those of your chosen database engine. An ER modeling tool
might, for instance, allow the definition of domains but different database
engines are likely to interpret this with varying degrees of efficiency and
some may not support it at all. The bottom line is that once you’ve generated
the schema from a complex physical model, don’t be surprised, when you set
it to generate the database for the first time, if it returns a bunch of errors that
require hand tweaking to fix.
Despite this, the gain from using an ER modeling tool does, in my experience,
far, far outweigh the pain. I use them frequently and would hate to have to
work without one. Implementation inconsistencies are inevitable but once
you get to know a database engine and a CASE tool well, you’ll be able to use
the two together in a highly efficient manner. You’ll know and avoid the op-
tions that are troublesome and any tweaking will be reduced to a minimum.
To end on a more positive note, there is one more advantage to using ER
modeling: ease of maintenance. All databases require maintenance and with
both the logical and the physical structure of the database documented, main-
tenance is considerably easier for those involved from the start and for any-
one who arrives once it’s up and running. Any changes that are necessary

160

18 • Database Design

should be made in the logical or physical model and the schema and data-
base re-generated. This ensures that the models always match the database
and that the documentation is up-to-date.

More about the differences between the Logical and Physical
models
While entities, attributes and relationships map readily to tables, fields and
joins, there are still occasions where differences occur between the models. A
good (and common) example is a many-to-many join. The user knows that,
for example, an Employee can work in many Territories and that each Terri-
tory can have many Employees working within it. In the logical model, the
Employee and Territory entities may be represented simply as having a
many-to-many relationship between them.

In the physical model, the Employee and Territory entities become tables and
a joining table is added so that a many-to-many join can be created between
Employee and Territory. In this instance, two tables in the logical model map
to three in the physical model.

18 • Database Design

161

It is not necessary for the user to understand how the join is implemented so
its implementation may form part of the physical model and not of the logical
model. The meaning of the many-to-many relationship, in terms of database
functionality is, however, fully understood by the user and is therefore repre-
sented in the logical model. Some ER modeling tools can create such joining
tables automatically and in others you have to add the table manually in the
physical model.
“Just a minute,” you may be thinking, “in your earlier example you showed
an entity called ‘Order Details’ in the logical model. That is doing precisely
the same job as the table called EmployeeTerritories which only appears here in
the physical model. So do these ‘joining tables’ appear in the logical model or
not?” This is an excellent question and the answer is that it is up to you. In
practice, whether you elect to show these ‘joining’ tables in the logical model
will probably depend upon how advanced is the users’ knowledge of the
whole process.
Another reason for divergence between the logical and physical models is
evident when the database structure is tweaked to optimize performance. ER
modeling usually produces a normalized structure (one in which certain
rules have been applied to ensure that data is stored in the most suitable table
– see Chapter 25 for more detail) but there are occasions when you might
want to denormalize it for performance gains (see Part 5 for details of per-
formance tuning). If the database in question was for a company operating in
America and in the UK, you may decide to split the list of customers into two
tables, holding the US-based customer records on a server in the US and the

162

18 • Database Design

UK-based ones on a server in the UK. You would also provide a view which
shows all the customer records for use whenever the entire customer base is
required.

Reality check
I have talked about ‘talking’ to the users. On large project this may well mean
a team of people sending out questionnaires, running workshops attended by
groups of users – the process of gleaning information from the users can be-
come quite complex but the principle remains exactly the same. Even though
they don’t think of it this way, they have a user model in their heads: your
first job is to turn that into a logical model.

Normalization can help
There is another way of developing a logical model and that is by acquiring
existing data that users may already have collected. For example, suppose
they have a spreadsheet in which they’ve collected data about orders placed
by customers but in a totally un-normalized way. If you normalize that data
you will end up with a set of tables – for example, customer, order, order de-
tails, employee, products etc. These should correspond exactly to the entities
that are in the logical model that you created by talking to the user. In prac-
tice the two models often do not correspond perfectly which initially appears
to be a problem but isn’t, it is an opportunity.
Think of it this way. The whole point about building a logical model is to es-
tablish as early as possible how the users are actually using their data. If there
is a conflict between what they tell you and what they are actually doing, you
really do want to find that out at the logical model stage.
What do you do about it? You go back to the user, you talk to them some
more, show them the conflict and together you resolve it.
In fact this can all work out very neatly because once you have resolved the
conflicts you can build the database. But you also have, because of the work
you did with the spreadsheet data, a normalized set of the user’s data. This
can be squirted directly into the database to provide a set of historical data.

18 • Database Design

163

Reverse engineering
At the risk of sounding even more eulogistic than I have already, there’s yet
another trick up the capacious sleeve of ER modeling tools. Given a copy of
ERwin you can reverse engineer the logical and physical models from an ex-
isting database. That’s how I generated the model of Microsoft’s Northwind
sample database shown above. It isn’t a perfect process but ERwin will report
on anything in the database with which it cannot cope so that you can make
any necessary tweaks. Not only is it clever, it has the potential to save time
and improve the maintainability of existing databases.

Methodologies
Just to make matters fractionally more complex, there are several different
ways of representing the same information in a logical model – these different
ways are known as methodologies. The two pictures above show the informa-
tion using a methodology called IE (Information Engineering) but we could
elect to use, for example, IDEF1X (Integration DEFinition for Informational
Modeling). It’s pronounced eye-deaf-one-ex and, yes, I know the acronym
doesn’t exactly match the words but I didn’t design it, I’m just reporting it…
Here is the same information shown in IDEF1X.

164

18 • Database Design

Before you can get involved in database design at this level, you have to take
some time to become familiar with at least one of these methodologies. As
with virtually everything else in life, as soon as there is choice there is con-
flict. Database people can become rabidly pro (or anti) a particular methodol-
ogy. I don’t have strong feelings either way but will, if pressed, express a pref-
erence for IE. The good news is that tools like ERwin can swap between these
two at the flick of an option so you can use whichever you prefer.
We aren’t going into the details of any particular methodology because we
think that level of detail falls outside the remit of this book. In addition, if you
go to work for a company to do design work, it will probably have a standard
you have to use and that’s the time to learn a particular methodology. What
you need to know at this point is that at some time you will probably have to
learn one.

Summary of design models
User model – the model that holds the view of what the users want from the
database. This is an extremely non-technical view that is simply concerned
with functionality and is not expressed in any formal way.
Logical model – A formalization of the user view that captures all the func-
tionality that the users want, but is expressed in a much more formal way
(typically as an ER model). It is also true to say that the logical model is a
model of the way in which the company processes and manages data (or
wishes to do so).
Physical model – The physical model encapsulates the information from the
logical and adds the detail necessary to fit it to a particular data model such
as the relational model. This will include, for example, deciding on table
names, data types, indexing considerations and so on.

20 • Database architecture

165

Chapter 19

The seven layers of wisdom

“Where did you put that data,
Where did you put that file?”
OK, that covers how we design a database. The next point to consider is how
and where you deploy it. In other words we haven’t talked about where the
components that make up the database – the database engine, the data and the
database application etc. – are going to be placed. There’s a huge range of pos-
sibilities. We don’t move the parts around for fun (although the process is in-
tellectually challenging and therefore enjoyable), we do it because each data-
base architecture has a distinctly different set of pros and cons. You may well
be called upon to make decisions about which architecture is appropriate for a
given database implementation so it is worth understanding the advantages
and disadvantages associated with each one. In order to understand these dif-
ferences, we need to look at the parts into which a database can be dissected,
then, in the next chapter, we’ll examine where those parts can be located.

The seven layers of wisdom
A database application can be thought of as being constructed from seven
layers.
In truth, I would hate to give the impression that this is some form of ‘official’ layering;
someone else might, quite justifiably, describe a database as having eight or perhaps six
layers. Exactly how we split up the database doesn’t matter too much; what is impor-
tant is that there are different components and that these can end up in different places.

Layer 1
User interface. This is that part of the application that contains, for example, the
forms with which the user interacts. These display information, prompts, pro-

20 • Database architecture

166

vide data and help, allow the entry of information and control the activities
undertaken. These are the forms in Access.

Layer 2
Input validation. The checking of the data as it is input to ensure that the data
is of the correct form and type (e.g. date format checking, and/or making sure
that numbers are put into numeric fields). In Access, this is often performed
using the GUI. The important point is that this checking can be performed on
the form during data input, as opposed to checking when the row is posted
to the table. In addition, this type of validation is often performed on the data
in a single field (“Is the value in this field > 500?”) as opposed to validation
that can be performed between fields (see Layer 4).

Layer 3
Application tasks. These are specific application functions such as calculating
the tax payable on an invoice or perhaps the total of that invoice. This is not
the same as Input Validation because it isn’t applied during data entry; rather,
it is applied during data retrieval. An example in Access would be one or
more calculated fields in a query which are then used in a report. These ma-
nipulations do not permanently affect or alter the data in the database.

Layer 4
Business rules. These check the specific business state and context, e.g. if the
total of an order exceeds $1,000 then a 5% discount is applied. Note that this
type of validation is often performed on the data in an entire record rather
than on a specific field and can often only be performed after some or all of
the data has been entered.
Business rules can also make use of data that exists in different tables, for ex-
ample, an order may be refused if the total exceeds the customer’s credit
limit.
Typically these checks are performed after the data has been entered into the
form, just after the user tries to post the data to the database and before it is
actually posted. Again, to put this into Access-speak, it is not unusual for
such checks to be bound to the ‘Before Update’ event of the form.

Layer 5
Data integrity rules. These are the rules that ensure that the integrity of the data
as a whole is not compromised. If, at this point you are thinking in terms of:

19 • The seven layers of wisdom

20 • Database architecture

167

Data integrity
Primary keys
Unique indexes
Referential Integrity
Foreign keys

and all that jazz, then you are in the correct ball park (or cricket ground if you
prefer). In Access these are applied when the database itself is being built
rather than, say, on a form.

Layer 6
Data management. This is the bit that organizes, queries and manages the data;
in other words this is the part that actually manipulates data. On the PC this
is the Jet engine which sits inside Access. In a multi-user database, this layer
also looks after processes like conflict resolution, when two or more users try
to modify the same data at the same time.

Layer 7
Data storage. Where the data is actually stored and accessed. In a stand-alone
Access application, this is the hard disk of the PC.
OK, those are the seven layers, where options do we have for deployment
and what are the consequences?
Incidentally, we are about to discuss where these parts are ‘located’ and it is worth
pointing out that sometimes one needs to distinguish carefully between where the
part is actually stored and where it is executed. For example, the code that describes a
GUI might be stored on the client or it might equally well be stored on a server some-
where. If we say ‘Layer 1 (the user interface) is on the client’, we mean that the proc-
essor in the client machine is actually reading the instructions (wherever they are
located) and drawing the GUI on the screen for the user. The same applies to the data.
When we say ‘the data is processed on the database server’ we mean that when it is
queried or edited, the data will pass through the processor in the server, not the one in
the client. In turn this means that we can definitely say that Layer 6 is on the data-
base server. The only layer that is solely concerned with where the information is
stored is Layer 7.
This may all sound as if we are being very pernickety, but it is worth being pedantic
at this stage because otherwise the picture can become obscured.

19 • The seven layers of wisdom

20 • Database architecture

168

Chapter 20

Database architecture

Default Architecture in Access
In Access, of course, we often develop an entire database on a PC and use it
there. This is an excellent solution for allowing single user access to a set of
data. If this is what you need then you certainly shouldn’t consider making
life any more complex for yourself by starting to move components around;
leave it on the PC.

Access – PC front end – data on file server
The most common reason for wanting to move parts of an Access database is
to allow multiple users to access the same data. This architecture is much the
same as before (that is, as when the entire operation ran on a stand-alone PC).
Each user who wants to use the data still runs a copy of Access on their PC.
However, the .MDB file itself (which stores all of the data, the forms, the que-
ries, everything) is placed on a file server somewhere on the network so that
it can be accessed by all of the PCs.
Now you might argue that since the .MDB file holds everything, we have
moved layers 1-7 off the PC – and in one sense we have. However, think
about the distinction between processing and storage that was mentioned
above. The .MDB file is meaningless without Access… and Access is still run-
ning on the PCs, not on the file server. In other words, it is the PCs that are
presenting the forms to the users, it is the PCs that are applying the referen-
tial integrity rules, it is the PCs that are running the queries against the data.
In processing terms all of the work is still being carried out on the PCs so, al-
though the .MDB file has moved, layers 1–6 are still all firmly located on the
PCs.

20 • Database architecture

169

In fact, in terms of architecture, the only real change is that the sole definitive
store of data now resides in an area where multiple copies of the RDBMSs can
see it, reach it and change it. In other words, layer 7 has moved to the file
server:

Another point is that the very act of sharing data means that the individual
copies of Access that are running on the individual PCs suddenly need to com-
municate with each other. They need to do this in order to resolve the multi-
tude of potential conflicts that suddenly arise when more than one person ac-
cesses the same data at the same time. Consider a simple example. You and I
both work for the same company and we are trying to update the company’s
customer records. I open up the record for A. Smith to increase his credit rat-
ing from $2,000 to $3,000. While I am doing so, you delete his record. What
happens to his record when I finish editing it and send it back to the file
server?
The answer is that Access maintains a lock file in the same directory as the
.MDB file and this file is used to store information about who is doing what at
any particular time. Thus, if I had opened the record to update it before you
tried to delete it, you would receive a message saying that the record was in
use by “Mark” and that you wouldn’t be able to delete the record until I had
finished with it. (Other RDBMSs use other mechanisms for dealing with these
(and other) potential conflicts – see Chapter 22.)
At first it must seem as if the conflict resolution (layer 6) has surely moved to
the server but essentially all that has happened is that some information about
who is using the data has moved to the file server. The piece of software that
uses this information (the database engine) is still on the PCs.
The important point is that with this database model, only the data has moved
off the PC onto the file server. In fact, it is important to note the use of the word
file before the word server in that last sentence. The server in question is sim-
ply being used as a file store. It is not an ‘application server’ nor a ‘database
server’ (see below); it doesn’t process data, it doesn’t even ‘know’ what the files

20 • Database architecture

170

in question are, it simply stores them and allows applications running on PCs
to access them.
The big advantage of this model is that it provides multi-user access to the
same data at a relatively low cost. The big disadvantage is that this model is
inefficient in two main ways.
First it tends to load the network. Remember that the data is at one end of the
wire and the processing is at the other end. Every time you query the data, it
has to be moved to the client PC since that is where it is crunched. In a badly
designed system this can mean that every query against a 1 Gbyte table re-
quires the entire table to be shipped to the client. Intelligent indexing can re-
duce this considerably (since the indexes can be shipped to the client for
searching and only the relevant records sent out to the client) but it depends
upon the RDBMS how effective this process is in practice.
Secondly, the processing is at the client end so each client needs enough re-
sources to cope with the data. If you decide that an increase in the database
size warrants an increase in memory of 1 GByte, you will need to add that to
all of the clients. Given one hundred clients, that’s 100 GBytes and a lot of
work upgrading the 100 machines.
These restrictions mean that the number of simultaneous clients and the size
of the data are relatively constrained. Think in terms of ten clients and 1
Gbyte of data. Once again, I feel the need to qualify this. I know of one instal-
lation that’s running such a system with up to 50 simultaneous users but it
has been carefully set up, limits what the users can do and is still rather slow.
OK, that is the overview of this architecture completed but a couple of practical details
can be added. The first is that it is common for people to split the .MDB file in ques-
tion into two .MDBs, one of which holds the tables while the other holds the forms,
queries, reports etc. The two .MDB files are linked so that the forms etc. in the latter
.MDB point to the tables in the former. The ‘data’ .MDB is then placed on the file
server and a copy of the ‘interface’ .MDB is placed on each of the PCs. This really
doesn’t affect the model I have described but it is worth mentioning because it can
provide a huge improvement in performance. As a further refinement, tables which
hold rarely-changing data, often that which is used to populate interface components
such as combo boxes, may be stored in the ‘interface’ .MDB. Again, and for hopefully
obvious reasons, this can produce significant performance improvements. As I say,
this has almost been a digression into too much detail about actually implementing
this particular data model but it seemed worth adding.
The bottom line here is that the entire range of database engines like Access,
Paradox, dBASE, FoxPro and Approach were originally designed to run as
single-user products. Some of them have been modified over the years to al-

20 • Database architecture

171

low a limited level of multi-user access and this is helpful for those times
when a database, originally written as a stand-alone application, needs to be
shared by a couple of people. However, if you want to allow large numbers of
people to access the same data at the same time, these products are the wrong
place to start and you need to use an RDBMS such as DB2, SQL Server or
Oracle that was written from the ground up with multiple users in mind.
As another aside, Microsoft has made strenuous efforts to make Access better at run-
ning with multiple users and to make it easier for you to move an Access application
to SQL Server. These include so-called project files that have appeared in the later
versions and the ability to use the MSDE (MicroSoft Database Engine) and SQL
Server Express 2005. These improvements are to be applauded; however, they still do
not make Access a good choice when the number of concurrent users is going to be
higher than about 20.

Client-server (or two-tier) architecture
This model is very commonly employed, particularly with database engines
like SQL Server and MySQL. The user interface is written as an executable
application (written in C++, VB, whatever) and runs on the PC while the data,
the processing and the conflict resolution moves to a database server.
Once again, just to try to stop this all sounding too abstract, we’ll look at a
practical example. Suppose you want to implement a database for 50 concur-
rent users. You decide to use as the database server, say, a twin processor In-
tel box running on the most recent version of Windows. The RDBMS engine
you elect to use won’t be Access but something like SQL Server, Oracle or
MySQL.
Let’s assume you choose SQL Server. You install it onto the Intel box and then
use the tools provided with SQL Server to create the tables. These will sit on
the database server, which puts layer 7 firmly on the server.
The applications that provide the GUI might be written in something like Vis-
ual Basic. They will run on the PCs so layer 1 sits on the client.
OK, that’s the two ends sorted out but what about the five layers in the mid-
dle? The client application will present the user with a GUI that enables them
to view, edit and add to the data. It is also likely to provide the input valida-
tion so layer 2 sits on the client as well. However, the selections made from
the GUI by the user will be translated into SQL which will be sent to the data-
base server for processing. The database engine will receive these, execute the
queries against the data and return the answer to the client. All of this tells us

20 • Database architecture

172

that layer 6, the data processing layer, is on the server. Database engines are
also perfectly capable of enforcing the Data Integrity Rules (referential integ-
rity etc.) so they also look after layer 5.
Layer 4, the Business Rules, can (and typically should) be enforced by the
RDBMS engine and, in practice, they usually provide a feature called Triggers
(see Chapter 22 for more details on triggers) for this purpose.
That only leaves layer 3, the Application Tasks. RDBMSs typically allow you
to set up Views within the database. These are essentially queries that are de-
signed by the database designer and can be run (but not modified) by the us-
ers of the database. This means that, for example, the users could be provided
with a button on the GUI labeled ‘Print end-of-month report’. When they
press it, the GUI passes a message to the RDBMS which runs the View and
returns the answer to the GUI which prints the report. Since the data is ma-
nipulated on the server, layer 3 is running on the server, not on the client.

The client-server model is typically not limited by bandwidth. Since the
query processing and the data itself are now snuggled together in one place,
querying no longer means that masses of data have to move across the net-
work. Instead, when the GUI running on the client is used to construct a
question, only an SQL description of that query is shipped across the network
to the server. This SQL will typically be a very short ASCII string. The data-
base engine on the server processes the query and simply sends the answer
(rather than the entire table) to the client. Conflict resolution is also handled
centrally with associated benefits in terms of speed and sophistication. And
centralizing the processing means that the whole system is easier and usually
cheaper to update. If the database slows down you can throw hardware (in
terms of memory and processors) at the server. You don’t have to add it to the
clients because they are simply handling the user interface.
This type of architecture is also known as two-tier architecture for the rela-
tively obvious reason that there are two tiers, the client and the server.

20 • Database architecture

173

Three-tier architecture (also known as multi-tier)
After that last sentence, we were bound to be going on to some other number
of tiers, and the next is typically three. The classic three-tier architecture in-
serts a tier in between the client and the server. The job of this middle tier is
to… well… do whatever you want it to do.
“This is a rather unsatisfactory explanation, Mark; can’t you do any better?” OK,
let’s get dogmatic for a moment. The middle tier in a three-tier architecture is
there to hold all of the user interface information that the clients use; in other
words, the code and data that makes up layers 1 and 2 (User Interface and
Input Validation).
Why do this? Well, imagine you are managing a two-tier database that has
250 clients. Every time you want to make any change to the user interface,
you have to install the application onto 250 machines. If this application can
be stored on an application server, you need only change the application in
that one single location and all of the machines are updated. Wonderful.
But wait a minute! I’ve just had an idea. Perhaps we could get the middle tier
to queue the requests coming in from the different users to reduce the con-
flicts generated between them (Chapter 23 talks about these conflicts and
ways to resolve them). Yes, we could.
Here is another idea. We might split the database across several different da-
tabase servers for speed reasons. We could connect the clients to one middle
tier machine and we then use that machine to make the split transparent to
the user; we’d get the benefit of the increased speed without adding to the
users’ workload. Yes, we could do that as well.
So which of these is really three-tier? The answer is that all of them are, and
there are lots more that may occur to you.
The point I am trying to make here is that two-tier architecture can be excel-
lent, but in practice, some two-tier systems turn out to have problems. These
problems are typically to do with speed but they can also be to do with main-
tenance and/or the ability to upgrade.

20 • Database architecture

174

In turn many of these problems can be sorted by adding a middle tier. How-
ever, it is very important to realize that this middle layer will be of no use
whatsoever unless it addresses the specific problem that is affecting the data-
base in question.
If you are ever asked to fix an existing database application that has got into
trouble, one of your first questions should be “How many tiers are you us-
ing?” and, if the reply is “Three” the next question should be “What is the
middle tier doing?” Don’t ever assume that you know. (I don’t speak from
experience here of course; I have never made this mistake myself…)
You don’t, of course, have to wait for a database to run into problems before
you elect to go three-tier; the decision should be made at the design stage in
order to ensure that the problems never arise.

Web-based applications
Ah, the web. We can’t possibly discuss databases without including the web, not
because it is trendy but because the web model works so well with databases.
The 7 layer model also works well with web databases so I’ll use it to illustrate
one basic way amongst the many in which a web database can be implemented.

20 • Database architecture

175

Check out the diagram below:

This solution is based upon a database server which holds layers 3–7 just as
the client-server architecture does. These layers are the data itself, data man-
agement processes, data integrity rules, business rules and application tasks.
All the reasons outlined above in the client-server section that tell us that lay-
ers 3–7 should be on the server are equally true in this case.
Once a web server is introduced into the architecture, it is that server which
talks to the database server. The client runs browser software (the only soft-
ware on the client that concerns us) and that browser, and therefore the client,
will only talk to the web server. The client no longer communicates directly
with the database server. Layers 1 and 2, the user interface and the input vali-
dation, sit on the web server, possibly in a mixture of HTML (HyperText
Mark-up Language) and Java. It is, as discussed above, not where the layers
sit physically that’s important but where they are executed. Though they’re
stored on the web server, they are executed on the client.
Why is this model so successful? There are two major factors that give it the
edge.
Firstly, the one and only consideration when determining the specification for
a client machine is an ability to run a browser. It’s known as a thin client (its
specification can be pared down to a skinny minimum) and as long as it can
run a browser at a reasonable speed, it will do the job of connecting to a data-
base regardless of how complex that database might be.
Secondly, the user interface and data validation elements are stored on the

20 • Database architecture

176

web server so that bug fixes and upgrades can be made in just one place and
thereafter all the clients can see the upgraded version.
If this all sounds similar to the description of three-tier architecture, you’re
right, so is this web database architecture two-tier or three-tier? The honest
answer is that I’m not sure. Some people would argue vehemently that it has
three tiers and some would insist that it has two. It doesn’t really matter all
that much: the important point is that you understand the pros and cons of
moving the layers around to create an architecture that works. If I had to
come down off the fence, I’d say that it is a two-tier solution. My main reason
for falling in this direction is that there is nothing to stop you from adding
another tier as discussed earlier between the web server and the database
server – but I’m not sure I’d like to defend this position too closely. It also
serves as a further illustration of why it’s so important to find out exactly
what people mean when they describe an existing system.

Choosing a database architecture
A database architecture essentially describes the location of all of the pieces
that make up the database application.
One of the advantages of getting used to thinking about a database applica-
tion in terms of the layers that we introduced at the start of this chapter is that
it becomes easier to see that these can be distributed between one or more
machines. This helps you to understand the common architectures (stand-
alone, client-server etc.) and, in addition, it gives you a more flexible view of
the whole process so that you can design an architecture that is the most ef-
fective solution for a given situation.
The decisions you make will be based upon the interaction of many factors,
including:-

Response time required
Number of users
Data size
Type of data access required (read only, read write)
Available resources (including hardware, software and money) and so on
Expertise on site

These factors interact in complex ways. For example, suppose that your sys-
tem definition makes multi-user access to the data essential: you can instantly

20 • Database architecture

177

rule out a stand-alone PC (unless you want fist fights over the keyboard).
However, if the number of users is guaranteed to be small (say, three), then
on a given hardware platform, you could allow those users to access a greater
volume of data than if there were 50 of them. If the number of users did then
increase, the system might still work, but the response time would drop. To
make matters worse, the interactions between these factors are often non-
linear. For example, doubling the number of users on a given system might
have very little impact on response time; doubling it again might bring the
same system to its knees.
I bet you can tell where this is leading, and you’re right. We are working up
the courage to tell you that despite the heading of this section – “Choosing a
database architecture” – we can’t tell you how to do it. What we have tried to
do is to give you some of the basic information you need in order to make the
choice between different architectures. In the end there is no real substitute
for experience which is what you gain as soon as you start playing with data-
bases.

What comes next
Although the joys of Parts 4 and 5 are still beneath your right thumb, this is
essentially the end of this book, at least in terms of the ‘story’ that we have
been following. We started with a single-table database and have ended up
with a multi-user, multi-gigabyte database.
Part 4 contains chapters which can, essentially, be read in isolation. If you
want to know more about SQL, read that chapter now. If normalization fasci-
nates you, dip into that chapter over a cup of cocoa this evening.
Part 5 tells you how to make your database run like the wind.

20 • Database architecture

179

Part 4

Related database topics

21 • What exactly is a relational database?

181

Chapter 21

What exactly is a relational
database?

Do multiple tables a relational database make?
So far we have skated around the definition of a relational database. It is really
tempting to believe that the use of multiple tables marks the transition to a re-
lational database. Indeed, I have read several times that a ‘relational’ database
is so called because it allows you to ‘relate’ information held in different tables.
How can I put this politely? This information is wrong. Anyone who tells you
this is incorrect. If they try to sell you anything, say nothing and back carefully
away.
So where does the word ‘relational’ come from? Chris Date says that “The rea-
son that such systems are called ‘relational’ is that the term ‘relation’ is essen-
tially just a mathematical term for a table.” (An Introduction to Database Systems,
6th ed., Addison-Wesley, 1995, p. 22).
He then goes on to define a ‘Relational Database’ as “a way of looking at
data… More precisely, the relational model is concerned with three aspects of
data: data structure, data integrity and data manipulation.” (ibid., p. 98). All
three of these are covered in Parts 1 and 2.
In other words, the term ‘relational’ comes from the rigorous mathematical
background which underpins the model and the relational database model
itself is a relatively complex entity of which only a tiny part is concerned with
the ‘relationships’ (more properly called ‘joins’) between tables.

On names and misnames
For the record, a database is a collection of structured data.

21 • What exactly is a relational database?

182

A database application is a broader term that encompasses not only the data,
but also the forms, queries etc. that are associated with the data.
In common usage, people often use the term database when they mean data-
base application. For example, when a business person talks about “our new
finance database” they usually mean the data, the hardware, the user inter-
face and everything. This common usage isn’t a problem – I often use it my-
self and would only bother distinguishing between ‘database’ and ‘database
application’ when it was important to do so.
A DBMS (DataBase Management System) is a system which can be used to
manage one or more databases. You will also hear it referred to as a database
engine.
Again, if we are being pedantic we can actually distinguish between these
two. Access, for example, is a DBMS. It has a built-in database engine called
Jet which is the specific part concerned with manipulating the tables of data.
But again, in common usage, DBMS and database engine are more or less in-
terchangeable.
An RDBMS is simply a DBMS that adheres to the Relational model.
Given the complexity of the relational model, it is possible to argue (as Chris
Date has done in the past) that few, if any, of the DBMS currently offered for
sale are actually true relational database management systems, since all fail to
implement some aspect of the model or other. However, this argument is es-
sentially immaterial. Whatever the rights and wrongs of the situation, almost
all of the DBMSs that you will come across today – SQL Server, Access,
MySQL, Informix, Sybase, Oracle, DB2 – are, to all intents and purposes, rela-
tional and hence can be rightly called RDBMSs.

22 • Triggers and stored procedures

183

Chapter 22

Triggers and stored
procedures

This chapter covers triggers and stored procedures which are important when
you write complex multi-user databases. The Jet engine in Access provides no
direct support for triggers although you can provide much the same function-
ality using VB and, say, the ‘Before Insert’ property of a form. There is no direct
support for Stored Procedures either although again, you can emulate pretty
much the same functionality using VB. Of course, Access can also connect to
other databases engines which do provide direct support for these features.

Triggers
A trigger can be thought of as a very small program that is set to go off under
certain conditions. (Or, less prosaically, think of a trigger as a loyal servant who
watches for certain events and, when they occur, carries out your bidding.) The
‘program’ is typically one or more SQL statements and a trigger is typically
activated by one of three types of modification to a row or rows in a table,
namely the SQL statements:

DELETE
INSERT
UPDATE

Triggers can be used for many things (limited only by your imagination,
really) but they are often used for data integrity checking. Business rules (also
part of integrity checking) can also be enforced with triggers. Imagine you had
a table of salary data and that you update an employee’s salary from grade 1 to
grade 2 on a scale. A trigger can ensure adherence to a business rule that states
that an employee at grade 1 must have been employed at that grade for x years

22 • Triggers and stored procedures

184

before being eligible for advancement. More excitingly, triggers can even be
used to send out email notifications under certain conditions, like the arrival
of a particular value in a table. Perhaps your company has just taken its
1,000th order and a party is called for. A trigger could have been set to detect
this event which sends an email ordering champagne. (As a purely personal
preference, we see more merit in the latter trigger than the former.)

Trigger terminology
As we said above, a trigger has a triggering operation (i.e. an event that sets it
off) which is typically a DELETE, INSERT or UPDATE statement.
A trigger has an activation time (i.e. the time when it’s set off) which can be
either before or after a DELETE, INSERT or UPDATE statement, giving six possible
combinations. Terms such as ‘before trigger’ or ‘after update trigger’ are often
used to describe the various types that can be built.

Typical usage of Before and After triggers
In general, Before triggers are used to ensure that all is well before a change is
made to a row. Think of a typical Before trigger like this: it says ‘Before you
make this change – check this fact.’ If the fact proves to be false, the database
is returned to the state it was in before the triggering event occurred. (See
Chapter 23 for more details about roll-back.)
In general, you would use an After trigger when you are happy that a par-
ticular operation is acceptable and you want some other operation to follow
it.
What’s needed here is a couple of examples.

Before
Imagine that the CEO of your company decides that no customers can be de-
leted from the database if they owe your company money (sounds sensible to
us). Here you would use a Before trigger – ‘Before you delete this row, check
that the customer is credit-clean and don’t allow the deletion if the customer
is in our debt’.

After
Imagine that you want to keep a count of the total number of customers
somewhere (not good practice in a fully normalized database, but sometimes
useful for performance reasons). In other words, if you add a customer to a
table, you want to increment a value in another table. In this case you don’t

22 • Triggers and stored procedures

185

want to prevent the SQL which is performing the Insert, you just want to in-
crement the value when it runs. In this case, you would use an After trigger.

More about triggers
A trigger has a name so it can be identified easily.
A trigger has a body. This is an important bit, the part that determines what a
trigger will do when the conditions that fire it are met, and it comprises one
or more SQL statements.
A trigger can have conditions that determine whether the trigger body is exe-
cuted or not. If you only want the trigger to run if, say, the new employee that
you are inserting into a table is in a particular department, you add a condi-
tion to this effect. Defining a condition for a trigger is typically optional.
Triggers are potentially very secure devices. They can enforce business rules
at table level even if you use a range of front-ends. A trigger is attached to the
table and will fire regardless of the front-end application which initiates the
trigger event. Tables can have multiple triggers attached to them.
So, triggers are great. We could almost, at this point, start to paraphrase A. A.
Milne:

The wonderful thing about Triggers
Is Triggers are wonderful things

…but we won’t, obviously.

22 • Triggers and stored procedures

186

As an example, here is a trigger from the Pubs database supplied with SQL
Server.

22 • Triggers and stored procedures

187

And just to prove the fact that database engines really do differ in the way in
which they implement triggers, here is a trigger in IBM’s DB2.

Triggers (and stored procedures) typically use SQL but may well include commands
written in an RDBMS-specific language – hence they are typically not highly port-
able between different databases engines.

Stored procedures
There are times when you want a standard operation to be performed, possi-
bly multiple times, but you don’t want it to be tied to any one particular event
such as updating a table. You’ll have gathered from the heading above that
stored procedures have a role to play here.

22 • Triggers and stored procedures

188

Imagine you maintain a relatively complex database with tables of sales data,
purchases, stock levels, employee costs and so on. Many people in the organi-
zation, possibly using several different client applications, are going to want
to see the company’s net profit. This is a calculation that will involve a num-
ber of operations: group by queries against several tables and manipulations
of the values thus generated. You could write into each client application a
series of SQL statements to do all this whenever you needed to but it is al-
most invariably neater to use a stored procedure.
As the name implies, a stored procedure is stored not in the client application
but in the database itself. It can execute the series of operations necessary to
perform the net profit calculation (to stay with the example). The procedure
is named (perhaps as NetProfit) and is then available to any client application
and when run it will return the net profit. One advantage is that the proce-
dure is written and stored once and is available thereafter as a resource
within the database. Another is that individual users don’t have to reinvent
the wheel whenever they need a calculation performed, and updating or edit-
ing the calculation is easy as it only has to be done once. Furthermore, stored
procedures run quickly because they are usually ‘compiled’, that is, turned
into a form that can be executed rapidly by the database engine.
Here is a stored procedure from the Pubs sample database in SQL Server.

22 • Triggers and stored procedures

189

Summary – triggers and stored procedures
The defining feature of a trigger is that it is attached to a table and cannot be
subverted – if an operation that sets off the trigger takes place, there’s nothing
that the client application can do to stop the trigger from firing. For imple-
menting business rules, triggers are invaluable. If an order has a value of
more than $10,000, a 5% discount can be applied automatically and the cus-
tomer’s name can be added, after checking that it isn’t present already, to a
table of customers who are sent a Christmas card.
Stored procedures can give you the ability to perform useful operations in a
standardized way for any client application with the necessary permissions,
thus ensuring that when different departments calculate a value, it’s always
done the same way. Stored procedures are quick to run and, because they’re
stored once, they’re easily maintained.
Knowing about both and acquiring a feel for when each can be used to ad-
vantage is a useful skill.

23 • Transactions, logs, backup, locking and concurrency

190

Chapter 23

Transactions, logs, backup,
locking and concurrency

Transactions
Tables hold data and that data is constantly being accessed, altered and up-
dated by various operations. It is relatively common in certain applications
for two or more of these operations to be logically related.
As an example, suppose Sophie gives Ross a check for amount X, written on
her account, in payment for his Dodge Viper (Sophie has excellent taste in
cars). Two discrete operations are involved. One is the removal of amount X
from Sophie’s account, the other is the addition of the same amount to Ross’s
account. However, it is clear that the two operations are logically related – as
demonstrated by the fact that if the first operation succeeds and the second
fails both parties are going to be upset (although Ross may be more vocifer-
ous).
Logically related operations of this kind are called Transactions.
When we send a transaction to a database three things can happen:

The entire transaction completes (in which case it is described as com-
mitted)
None of the transaction completes
Part of the transaction completes

Clearly, committing the transaction is the most desirable conclusion but, of
the other two, it is far better if no part of the transaction completes than just
some of it.

23 • Transactions, logs, backup, locking and concurrency

191

Typically any one operation within a transaction is a single SQL statement;
thus a transaction is usually made up of several SQL statements.
So that’s a transaction, but why are they of such fundamental importance?
Transactions are usually generated by client applications that send them to the
RDBMS. If an application crashes during a transaction, or the network fails,
the transaction may be left half completed; that is, the money has gone from
Sophie’s account but it hasn’t arrived in Ross’s. The database itself is fine in the
sense that nothing has happened to offend its referential integrity. Both Sophie
and Ross’s records show a balance in their current accounts; the problem is
that the values it shows are inconsistent with reality. So, we need some mecha-
nism for dealing with incomplete transactions.

Rollback
Rollback means undoing the operations of a transaction that have not been
committed. In other words, if a transaction fails to complete, rolling it back will
leave the database in the same state it was in before the transaction started.
Rollback is amazingly useful because it can be used to deal with much more
than simply occasions when just a single application fails and leaves one trans-
action uncommitted. Imagine a heavily used database running on a server that
crashes (perhaps because the power goes down). If there were fifty transac-
tions underway at that moment, the database is likely to be in a highly incon-
sistent state. However, if the RDBMS can roll back all fifty incomplete transac-
tions, then it will be fine. Some RDBMSs will even do this for you automati-
cally whenever started up after a crash.
Clearly, in order to perform this magic, the RDBMS needs to keep track of in-
complete transactions, and it does this with logs.

Logs
Access doesn’t support logging. See the end of the chapter for more informa-
tion. Whenever a transaction starts against a database, the fact is recorded in a
log file. Log files store information like:

when a transaction starts
what operations are completed
when the transaction itself is completed (that is to say, committed)

Many RDBMSs use a process known as Circular logging as the default form of
logging. Its name reflects the way in which it is implemented.

23 • Transactions, logs, backup, locking and concurrency

192

Circular logging
As anyone who has worked with disk files knows, it is much easier to ap-
pend information to a file than it is to delete particular pieces of information
from within a file. Therefore references to committed transactions are not ac-
tually removed from the logs. Instead information is written to a log file until
the file reaches a set size. (There will be a default size set for this file and
you’ll probably be able to configure it should you wish.) Thereafter a second
log file is opened and transactions are written into that. The completion of
each transaction is still, of course, noted as and when it occurs. When that
second file is full, a third is opened. By the time that one is full, it is highly
likely that every transaction recorded in the first file will have completed. If,
and only if, this is the case, the first file will be overwritten. Thus at any time
there will typically be three log files in which current transactions are being
recorded. Hence the term ‘circular’ logging because typically three files are
used in rotation.
A useful definition at this point is the term ‘Active’ log file. This describes a log file
that contains references to one or more uncommitted transactions. Thus in the para-
graph above we could have said “By the time that one is full, it is highly likely that
the first file is no longer active. If this is the case, the first file will be overwritten.”
The opposite of an active file is an inactive file, although the term doesn’t seem to be
used very much in practice.
Using circular logging, you always have a full and complete record of all cur-
rently incomplete transactions, including the operations completed to date
within each. If one transaction needs to be rolled back, you have the neces-
sary information in the active logs to do that. If the server on which the
RDBMS is running crashes, when it is restarted it can examine the active logs
and automatically roll back all of the incomplete transactions.

Secondary log files
You may remember that we said above that many RDBMSs will maintain
three log files and that by the time the third one is full, the first is likely to be
inactive. You might be wondering what happens if the first file is still active.
All that happens is that a fourth log file is opened known as a Secondary log
file (the default three are Primary log files). “Yes, but what happens if…” then
it opens a fifth. Clearly there has to be a limit somewhere and there is. When
you first start, your databases are unlikely to need more than the default set-
tings and when they do you will find that you can configure them as you
need.

23 • Transactions, logs, backup, locking and concurrency

193

What is stored in a log file?
We said above that the log files store the ‘operations’ that are carried out dur-
ing a transaction. This might imply that the actual SQL commands are stored,
since each operation is typically an SQL statement. However, this wouldn’t
work in practice. Consider the SQL statement:

UPDATE ORG
SET DIVISION = ‘Western’
WHERE DIVISION = ‘Eastern’;

This statement looks for all rows in the ORG table where the value in the col-
umn DIVISION is equal to Eastern and sets it to Western.
Imagine that the ORG table has three rows in which DIVISION = ‘Eastern’ and
two where DIVISION = ‘Western’. After the SQL statement has run, there are five
rows where DIVISION = ‘Western’. If all we have in the log file is the SQL state-
ment and we try to roll back, how do we know which of the five to turn back
to ‘Eastern’? The answer is that we don’t. So, in practice, the log file stores a
copy of the information that is changed. However, if you imagine the log file
as storing a set of ‘reversible SQL statements’, you have a perfectly functional
mental picture of what it contains.

Summary of circular logging
Maintaining circular logs clearly takes up resources, which is another way of
saying that doing so must inevitably slow down the database slightly. How-
ever, the speed hit is tiny and the pay-off is huge since circular logging en-
ables the database to roll back any or all incomplete transactions. In turn the
ability to roll back transactions enables you to protect your database against
corruption from:

network failure
application or server crash

So circular logs are wonderful, but they don’t protect your data against all
possible disasters. For example, if the disk on which the database resides
crashes, you still lose all of your data. This is, of course, where backup comes
in. If you backup your database to disk every night then if the disk crashes
you can replace the disk and restore the database.
But suppose that the disk crashes at, say, four o’clock in the afternoon. You
can restore the database to the state it was in the previous night, but you have
lost all of this morning’s transactions.
You can probably see where this is leading. Suppose you perform an off-line

23 • Transactions, logs, backup, locking and concurrency

194

backup on Monday evening. On Tuesday morning, as transactions start to
run against the database, you perform logging to ensure that you can roll
back if necessary. However, instead of using circular logging (which over-
writes the inactive log files) you get the database engine to keep all of the log
files intact.
Now when the disk crashes at four o’clock, you replace it, restore the data-
base, and then roll forward.

Roll forward
Running complete transactions from a log file against a backup is known as
roll forward. (Clearly any uncommitted transactions in the log files are not
run during a normal roll forward.)
Of course, as soon as you get the idea of roll forward, you realize that it has
great potential. As long as the log files also contain a time/date stamp for each
transaction, you can roll the database forward to any chosen point in time. So,
if a rogue application (not to say a rogue employee) happened to be creating
mayhem in your data for some time before the system finally crashed, you
can roll forward to a point just before the damage started. Suddenly roll for-
ward is a really powerful tool.
You can also use it as a form of archiving. Imagine you have a backup taken
on 1/1/2007 and that you have log files for the next three months. If you
wanted to see the state of the database on the 2/2/2007, all you have to do is to
restore the database and roll it forward to the date you want.
It ought to go without saying (but I’ll say it anyway) that if your database was called,
say, ADMIN, you would restore the backup to something called, say, ADMIN2 rather
than overwrite your current copy of ADMIN.
This sort of roll forward is also known as point-in-time recovery.
This form of logging, where all of the log files are retained, can no longer be
called circular logging and is referred to as Archive logging.

Archive logging
An archived log stores details of all transactions since the last backup and can
be used to restore a database to any point between that backup and the fail-
ure (as described above).
When all the transactions in an active log are complete, the log is closed and,
instead of being recycled as a new active log, it becomes an archived log.
It is worth explicitly stating that Archive logging doesn’t prevent you from being able

23 • Transactions, logs, backup, locking and concurrency

195

to roll back transactions in exactly the same way as it could with circular logging.
Think of archive logging as circular logging plus.

Locations
Log files are kept in a folder on disk and by default this can be on the same
disk as the database. For performance reasons, you may well want to move it
to another disk. In addition this can have positive data security implications;
if the database disk melts down you don’t lose the logs as well.
Really paranoid (sorry, really careful) DBAs will not only keep the log files on
a different disk, they will periodically back up the inactive log files to yet an-
other device (typically tape or a disk on another machine). This leads to yet
another form of classification because an archive log is described as ‘on-line’
when it is stored in the database log path directory and ‘off-line’ when it has
been moved. The ‘database log path directory’ simply means the place
(typically a folder) where the database is currently storing the log files.
You can play games with these classification systems like asking if it is possi-
ble to have:

A. an on-line active log file?
B. an off-line inactive circular log?
C. an off-line active log file?

Answers at the end of the chapter.

Backup strategy
So, there is a whole host of options and possibilities. What we’ll do now is to
walk through the different options pointing out their pros and cons.
When you create a database and use circular logging, this keeps track of all
the transactions that have been started but have yet to complete. Circular log-
ging ensures that any or all uncommitted transactions can be rolled back if
necessary. This protects your database against application failure, system
crashes and power failure. In fact, this protection is often automated: the
RDBMS will automatically roll back uncommitted transactions in the event of
a server crash or power failure whenever it is restarted.
However, circular logging does not protect against media failure or, say, the
actions of a disgruntled employee. For that you need archive logging.
Archive logging keeps copies of all transactions and allows the RDBMS to
roll back uncommitted transactions as before, but also to roll them forward
from a backup.

23 • Transactions, logs, backup, locking and concurrency

196

Since this sort of protection is valuable we make the following general recom-
mendations for a production database. (You can be less particular for a test
one, but we still recommend backing those up).

Recommendations
As soon as you create a database and before you add data or let users loose
on it, make sure that the log files are being saved to a disk other than the one
on which the database resides. Make an off-line back up of the database and
ensure that your RDBMS is using Archive logging.
You now have a copy of the database on some other medium (presumably
tape) and you have told the RDBMS to record every subsequent change to the
database. These changes are being recorded away from the database. You are
protected from transactions that fail to complete; in addition you should now
be protected from a disk crash or an unhappy employee. Finally, we would
suggest that you make backup copies of the on-line inactive log files onto an-
other medium such as tape.
We’ve described what we hope is a safe strategy but clearly only you can de-
cide what is safe for your data. The information above is a broad overview
that should help you to determine your own backup policy.
Incidentally, we say that you should put the log files on another disk, but that
disk should be located on the same server, not a remote one. The problem
with using a remote server is that, should the network glue up (or fail com-
pletely) your database will run abysmally slowly or die.

Other points worth considering

Off-line backups
An off-line backup is the most straightforward. Ensure that no one is access-
ing the database (so that it is in a static state) and make a copy.

On-line backups
It is also possible to make an on-line backup, where users can continue to
work with the database. An on-line backup isn’t a snapshot of the database at
an instant of time. Instead it may be spread over several minutes/hours or
even days. Note that an on-line backup is highly likely to contain inconsistent
data because some transactions will have started before the backup and will
complete during it. Others will start during and complete afterwards. An on-
line backup is thus of little value if archive logging isn’t in operation. On the

23 • Transactions, logs, backup, locking and concurrency

197

other hand, if archive logging is running then the backup is perfectly valid –
as long as you roll the database forward to a point in time that is after the end
of the backup.
As general advice, use off-line backups if possible; they generally make your
life easier.

Locking
As soon as you have multiple people accessing the same database, the possi-
bility for conflicts of interest is introduced, some of which are illustrated be-
low. In order to overcome these potential problems, database engines typi-
cally implement a process called Locking. Locking has two effects, one good,
one bad. The good one is that it can resolve conflicts between users. The bad
is that, as a by-product, it introduces some problems of its own which also
have to be resolved. It all sounds rather like a buck-passing exercise but hap-
pily the whole solution usually ends up working satisfactorily.
The entire process does, however, become very complex and reams can be
written about it in excruciating detail. We considered writing those reams for
you, but decided in the end that you wouldn’t thank us because much of
what we would write would be specific for a given database engine, since
they implement different bits in different ways to end up with their unique
solutions. Our purpose here is not to tell you everything you need to know
about locking in your chosen database engine but to introduce you to the
topic so that when you read or hear about it, or encounter it in a particular
database engine, you’ll recognize it and have an overview to help you under-
stand that implementation.
Let’s start with a simple example. Remember that poor benighted A. Smith
from Chapter 20: I open his record with the intention of increasing his credit
limit from $2,000 to $3,000 while you open it to delete his entire record. What
we have here is a conflict of interests and locking was invented to deal with
such conflicts. With locking implemented, if I get to A. Smith’s record first
and start editing it, when you get there to delete it, you find that the record is
‘locked’, that is, you can’t delete it or do anything else to it until I’ve finished
and posted the record back to the database.
Wow! That’s easy! And it is true; expressed like this, locking sounds simple.

23 • Transactions, logs, backup, locking and concurrency

198

Deadlocks
Unfortunately, when you mix locking and transactions, further problems oc-
cur which can be referred to as deadlocks. Imagine a banking database with
two current accounts, belonging to Eric and Teri, and two transfers of funds
that we need to complete. One is to take $50 from Eric’s account and put it
into Teri’s and the other is to take $120 from Teri’s account and put it into
Eric’s. Each transfer is a discrete transaction comprising two operations. So if,
for example, we focus on the first transfer, it has two operations. The first
opens Eric’s account and extracts the money and the second opens Teri’s ac-
count and pops the money in. The entire transaction must either complete or
be rolled back.
So far so good: there is no problem at all unless the two transactions try to
occur at exactly the same time. Imagine that the first operation obtains a lock
on Eric’s record, takes out the money and then tries to obtain a lock on Teri’s
record. Meanwhile, the second transaction has obtained a lock on Teri’s re-
cord in order to extract $120 and now tries to obtain a lock on Eric’s record.
You see the problem: now we have a deadlock. Neither transaction can com-
plete until the lock it requires is released and neither will give up the lock it
already has in its grasp. You can make deadlocks as complicated as you like;
in fact, they rarely involve as few as two records. Add in a set of concurrent
transactions that involve the accounts of Leila, Gus and Claude, and you can
create a deadlock that involves five lucky participants.
Transactions are an essential part of databases, as described above, and lock-
ing is an essential part of multi-user databases. The bank account tangle is
just one illustration of a whole series of new and interesting problems that
can arise. So just how do you go about resolving deadlocks?
In the early days of databases, it was left to the database administrator to wait
for phone calls from irate users, to hunt down deadlocked transactions and
kill off one or more of them so that the others could complete. The situation
has improved since then in two main ways: firstly, database engines evolved
which were good at spotting deadlocks and dealing with them automatically.
Secondly, not all locks on records are equal and a database engine may pro-
vide a variety of locks for use in different situations.
As an example of lock usage, imagine a client-server database engine running
a database with different client applications all sending complex transactions
to the engine. It’s perfectly possible for the designers of the applications to
actively specify what sort of lock is to be used during the execution of their
application. The types of lock available can be important and will vary de-
pending on the engine in use, but support for a good range of locks lets you

23 • Transactions, logs, backup, locking and concurrency

199

build applications that generate transactions which are less likely to create
deadlocks.
If this begins to make this all sound complex, you will be relieved to hear that
you are not obliged to specify the level of locking to be used because defaults
will be applied by the database engine, but it is worth knowing that it is pos-
sible to change from the defaults. It is also worth knowing that the appalling
performance of an application might possibly be due to the locking that’s be-
ing applied.
It’s a natural temptation for developers to use ‘strong’ locking in their applica-
tion – so that it grabs all the locks it needs and holds them until it has com-
pleted an entire transaction. This can damage the performance of the data-
base as a whole and worse, should that application also let its users go to
lunch in mid-transaction, you have the potential to sock the performance of a
whole database.

Concurrency
You may hear people using the word ‘concurrency’ in this kind of context,
saying, for example, that a database and its applications have ‘good concur-
rency’. Good concurrency is highly desirable and it’s easiest to explain by ex-
ample. A database with good concurrency allows large numbers of users to
access a database without any noticeable impact on performance. This im-
plies that the applications that run against the database have been written to
use locking with elegance and sympathy for the needs of others.

Row locking and page locking
Again, we mention these terms because you may hear them in general usage.
A row lock will lock a single record in a database and is a very desirable form
of locking as it minimizes the impact on other users of the same database. A
page lock uses more of a shotgun approach. It locks an entire ‘page’ of the
table, which may embrace several rows (even though the application is only
modifying one of them). The number of records locked is determined by the
page size implemented in the particular RDBMS you’re using. In practice it is
best if an engine supports both because either can be optimal under different
conditions.
Row and page locking have raised contentious issues in the past, especially
during the period when some database engines (SQL Server in particular)

23 • Transactions, logs, backup, locking and concurrency

200

were pilloried for not supporting row locking. This is now much less of an
issue since any engine worth its salt (SQL Server included) supports both
kinds of locking.

Access and the features described in this chapter
As we said earlier, Access doesn’t directly support logging. Without logging,
individual transactions (supported by the Jet database engine since version
4.0) can still be rolled back but more advanced features, such as roll forward
and on-line backup are not possible in the same way.
However, as we said at the beginning of the book, we will tell you about all of
the features of relational databases because the book is more about relational
databases than about Access. Our slight problem in this case is that, while
most client-server database engines support logging, they can do so in quite
different ways. It’s not a huge problem because the important point here is
the underlying principle, not the implementation. So, we have described a
relatively common implementation (circular and archival logging) but do
make sure, if you connect Access to another engine, that you read up about
how that particular engine actually implements logging.
Access does, of course, support off-line backups. It also has a mechanism for
locking (and hence provides concurrent access to the data). This is fine for up
to 5 concurrent users, perhaps 10, depending on the workload but it is not
suitable for larger numbers.

Answers from earlier
A. Yes
B. No
C. No

24 • Codd’s rules

201

Chapter 24

Codd’s rules

Relational databases are, by now, so widely accepted that many people are un-
aware that any other form of database can exist. It is also sad (but true) that
many people don’t know what particular facets of a DBMS make it relational
or not. Since the relational model is the brainchild of Dr. Edgar Codd (‘the Fa-
ther of the Relational Database’), the best place to start is with Ted Codd’s
rules. These rules have been quoted and misquoted so many times that in the
interests of accuracy I went back to the original two articles by Codd himself
(Computerworld, 14th and 21st October 1985). In the first of these he writes:

“In this paper I supply a set of rules with which a DBMS should
comply if it is claimed to be fully relational.”

In practice these rules have been modified and extended and if you want to
know more about Codd’s ideas try The Relational Model for Database Manage-
ment Version 2 by the man himself.

Economy vs. readability
I have the very greatest respect for Dr. Codd; after all, he was the one who de-
signed the relational database management system. In his writings, Codd ex-
pressed his ideas with admirable accuracy and economy. Sadly this combina-
tion has left them somewhat unintelligible to the average reader, which is a
shame since he was, without doubt, the greatest authority on the subject. What
I have tried to do is to make the rules more understandable by expanding
them. In the process, inevitably, some of the precision is lost and I apologize in
advance for any offence caused. If in doubt, believe Codd’s original and not
my interpretation.

24 • Codd’s rules

202

A little background
Some of the quotes I intend to use from these two papers only make sense if
you are aware that by 1985 a great deal had been published about relational
databases but few products existed. Several manufacturers were producing
systems for mainframes with the word ‘relational’ on the box (or on the crate
in the case of the bigger systems). Most of these products appear to have of-
fended Codd deeply; indeed the articles are, in places, simply a vehicle for his
diatribe against them. This can be seen in the introduction to the first paper:

“...some vendors of nonrelational DBMS have quickly (and recently) added a
few relational features – in some cases, very few features – in order to be able
to claim their systems are relational, even though they may not meet the sim-
ple requirements for being rated ‘minimally relational’. We shall refer to this
kind of DBMS as ‘born again’. It is a safe bet that these Johnny-come-lately
vendors have not taken the time or manpower to investigate optimization
techniques needed in relational DBMSs to yield good performance.”

No-one could ever have accused Codd of pulling his punches.

The rules themselves
There are 13 rules in all. Codd started numbering them at zero rather than
one and this has caused confusion ever since because the last one is therefore
number 12. It is very common to hear people talk, erroneously, about ‘Codd’s
12 rules’.

Rule 0: For any system that is advertised as, or claimed to be, a relational data
base management system, that system must be able to manage data bases en-
tirely through its relational capabilities.

Note that Codd used a space between the words ‘data’ and ‘base’ but this construction
has fallen from favor.
Rule 0 is reasonably clear. For a DBMS to qualify as relational it must have all
of the features of the relational model, not just a subset. At the time Codd for-
mulated these rules, many of the DBMSs which were advertised as relational
were actually based on a system other than relational (e.g. hierarchical). The
manufacturers had just bolted on a few relational ‘features’ in the hope that
everyone would believe the products were fully relational.

24 • Codd’s rules

203

The information rule
Rule 1: All information in a relational data base is represented explicitly at the
logical level and in exactly one way – by values in tables.

This rule says that all data should be stored in tables and in no other way. The
use of tables to store data has become such a fundamental part of modern
database systems that it sounds a little odd to explicitly write it down; it’s
rather like writing that all cars should have wheels. However, when the rules
were written it was less accepted and therefore worth saying.
In case anyone is in any doubt about what a table looks like, this is one called
STUDENTS; it has four columns called ID, FirstName, LastName and DOB. It also
has five rows.

The guaranteed access rule
Rule 2: Each and every datum (atomic value) in a relational data base is guar-
anteed to be logically accessible by resorting to a combination of table name,
primary key value and column name.

First, some terminology; datum is the singular form of data and a datum is a
piece of information. The word does not figure much in everyday usage since
‘data’ is now commonly, if inaccurately, used as both the singular and plural
form. An atomic value means the information contained in one field of one
record. Codd is using the term ‘atomic’ in the nuclear sense of an item which
cannot be subdivided (at least, not without recourse to a particle accelerator).
Rule 2 says that each entry in a table of data must be locatable with no more
information than the name of the table, the field name and the value in the
primary key. Thus in the table below, you can find the last name of a given
student as long as you know the table is called STUDENTS, that the relevant
column name is LastName and that the student’s ID number is, say, 4.

ID FirstName LastName DOB
1 MIKE WELLINGTON 16 May 1985
2 SALLY JONES 13 July 1986
3 TZANOVICH SMITH 12 December 1986
4 GEOFFREY PHILLIPS 17 April 1976
5 TANIA NBANGO 12 September 1986

STUDENTS

24 • Codd’s rules

204

As Codd says when expanding on this rule ‘the primary key concept is an essen-
tial part,’ so we can take this rule to say also that each table in a relational da-
tabase must have a primary key and each data value in that key must be a
unique identifier.

Systematic treatment of null values
Rule 3: Null values (distinct from the empty character string or a string of
blank characters and distinct from zero or any other number) are supported in
fully relational DBMS for representing missing information and inapplicable
information in a systematic way, independent of data type.

Codd also says in his commentary on the rules that ‘it must be possible to spec-
ify “Nulls not allowed” for each primary key column.’
Null values are very important in databases, much more so than their name
implies. A null value is supposed to represent an absence of information; it’s
not the same as a space or a zero, a dash, a hash or any other representation.
A null means that we don’t know what information should be entered into
this field. It certainly does not imply that we don’t care about the content of
the field. This may seem like a trivial distinction but it isn’t. In the context of
Rule 3, the important point is that nulls should be handled in a logical and
consistent manner. Oddly enough, handling them logically isn’t too difficult if
the problems that they raise are considered in isolation. Ensuring that an
RDBMS is entirely consistent in the way it handles nulls is more difficult. It is
interesting to note that Codd simply states that the RDBMS must do it; he
doesn’t suggest a way in which this ideal can be implemented.

Dynamic on-line catalog based on the relational model
Rule 4: The database description is represented at the logical level in the same
way as ordinary data, so that authorized users can apply the same relational
language to its interrogation as they apply to the regular data.

An implicit assumption in this rule is that every RDBMS will have a ‘database

ID FirstName LastName DOB
1 MIKE WELLINGTON 16 May 1985
2 SALLY JONES 13 July 1986
3 TZANOVICH SMITH 12 December 1986
4 GEOFFREY PHILLIPS 17 April 1976
5 TANIA NBANGO 12 September 1986

STUDENTS

24 • Codd’s rules

205

description’; Codd apparently believes this to be so fundamental to the whole
concept of an RDBMS that he does not actually state it. A database descrip-
tion is more commonly known as a database dictionary (a term which Codd
himself uses in his expansion of Rule 4), a data dictionary, a system catalog
and/or the system tables. It is an entity which holds a description of the entire
structure of the database – the tables in the database, their internal structure,
the joins between the tables, the indexes that have been applied to the col-
umns and so on. (For more details, see Chapter 27, which is about the system
tables.) This data is often referred to as the ‘metadata’.
The rule says that the structures in which the information in the data diction-
ary is held should be the same as those for data in the database itself and that
there should be no additional complexity for users who need to deal with
data in the data dictionary. To put that another way, if you look inside the
data dictionary, you should find information about how your database is
structured and that information must be held in tables. It all sounds a little
incestuous because we end up with tables that define tables (including them-
selves) but the concept behind this rule is perfectly sound. As you become
familiar with a particular RDBMS, you learn how to access the data which is
stored in your tables. In learning that process, you also learn how to access
the information about the database itself.

Comprehensive data sub-language rule
Rule 5: A relational system may support several languages and various modes
of terminal use (for example, the fill-in-the-blanks mode). However, there must
be at least one language whose statements are expressible, per some well-
defined syntax, as character strings and that is comprehensive in supporting
all of the following items:

Data definition
View definition
Data manipulation (interactive and by program)
Integrity constraints
Authorization
Transaction boundaries (begin, commit and rollback)

This rule may appear somewhat anachronistic. After all, we expect to drive
most RDBMSs via a GUI nowadays. Do we really care if there is an underly-
ing, unifying language?
The answer is ‘Yes’ if we expect that database to operate on anything other

24 • Codd’s rules

206

than a stand-alone PC. Once you expand a database to multi-user operation
across a network, the communication between client and database engine is
much more efficient if it can be expressed in simple character strings.
Whether Codd had this in mind when he formulated the rule is another mat-
ter; he may have simply been trying to ensure that users could always find a
consistent way of interacting with their databases. However, the rule is still
highly applicable today. The language that has become the de facto standard
here is SQL (Structured Query Language). Despite the use of the word
‘Query’ in the name, SQL is not limited to querying and can be used for all of
the above operations.

View updating rule
Rule 6: All views that are theoretically updatable are also updatable by the sys-
tem.

On the face of it, this is a simple rule; it’s short, concise and unambiguous.
However, reading Codd’s further expansion of Rule 6 rapidly disabuses you
of that first naïve interpretation. He says ‘Note that a view is theoretically up-
datable if there exists a time-independent algorithm for unambiguously determining a
single series of changes to the base relations that will have as their effect precisely the
requested changes in the view ’. Oh.
Perhaps some definitions might help to shed light on this obfuscation.

Relation Codd uses the term ‘relation’ to mean, effectively, a table of
data.
Base relation/base table This is a table that exists within a database and
is typically stored on disk. It can be distinguished from other types of
table, such as an answer table (see below under View). A base table
might look like this.

View A view is essentially a query that is stored as part of the database
and can be run against one or more of the tables. In Access views are

ID FirstName LastName DOB
1 MIKE WELLINGTON 16 May 1985
2 SALLY JONES 13 July 1986
3 TZANOVICH SMITH 12 December 1986
4 GEOFFREY PHILLIPS 17 April 1976
5 TANIA NBANGO 12 September 1986

STUDENTS

24 • Codd’s rules

207

not distinguished from queries. In a client-server database (such as
SQL Server) the difference is that views are stored on the server as
part of the database while queries are generated from the client and
sent to the database.
Views are essentially SQL statements, such as:
SELECT STUDENTS.FirstName, STUDENTS.LastName
FROM STUDENTS
WHERE STUDENTS.FirstName="Sally";
However, when the view is accessed it appears as a table of data with
rows and columns:

This is an answer table and not a base table.
We can thus rewrite the expansion of Rule 6 as:
Note that a query is theoretically updatable if there exists a time-independent
algorithm for unambiguously determining a single series of changes to the
underlying tables that will have as their effect precisely the requested changes
in the answer table.

So, have my definitions helped to clarify the clarification? Probably not as yet,
but we’re getting there.
Another way of expressing Rule 6 might be as follows. You should be able
not only to look at the data in an answer table, but also to edit and change the
data that you see there. However, there are restrictions. You should only be
allowed to edit this data if the updating action (be it modifying, inserting or
deleting information) makes sense and does not break any of the fundamen-
tal rules of the database structure.
As an example of an edit that doesn’t make sense, consider this example. Sup-
pose that your base table is like this:

FirstName LastName
SALLY JONES

24 • Codd’s rules

208

and that the primary key is SaleNo. You then query it to find the average
value of a sale:

Clearly the RDBMS cannot allow you to edit this value because the figure it
shows is derived from a number of different records.
As an example of an edit to an answer table which could cause loss of data
integrity, suppose that you create a query which shows the following three
fields from the SALES table:

The act of adding records to this table must be forbidden because it is impos-
sible to include a primary key value to the record that you add. Since all re-
cords must have a value for the primary key, allowing the addition of a re-
cord will compromise data integrity.
It can now be argued, however, that Rule 6 is of academic interest only be-

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

SALES

AvgOfAmount
$731.08

ANSWER

Customer Item Amount
Simpson Sofa $235.67
Johnson Chair $453.78
Smith Stool $82.78
Jones Suite $3,421.00
Smith Sofa $235.67
Simpson Sofa $235.67
Jones Bed $453.00

ANSWER

24 • Codd’s rules

209

cause in 1988, a certain H. W. Buff published a paper entitled Why Codd’s Rule
No. 6 Must Be Reformulated. As the title suggests, this paper proves that Rule 6
is fatally flawed. Buff’s paper shows that no RDBMS can ever support this
rule because ‘there does not exist any algorithm which can decide, given any
view, whether it is updatable or not.’ What’s more, he proved it.
In The Relational Model for Database Management Version 2 published in 1990,
Codd acknowledges that Buff’s paper is correct and modifies Rule 6 by defin-
ing an algorithm which will identify a good percentage of updatable views.
The bottom line is that we have to understand that the system cannot identify
all views that can be safely updated. However, it is relatively easy for the sys-
tem to partition answer tables into two groups:

— those which are definitely safe to update
— the others

Clearly an effective RDBMS should allow us to update those which fall into
the first category and exclude the update ability from answer tables which
fall into the second. Access, for example, does so.

High-level insert, update and delete
Rule 7: The capability of handling a base relation or a derived relation as a sin-
gle operand applies not only to the retrieval of data but also to the insertion,
update and deletion of data.

Remembering that Codd uses the term ‘relation’ to mean a table, we can in-
terpret this rule as follows.
You expect the RDBMS to allow you to retrieve rows with a single command,
that is, it should let you query the database in the normal way. Rule 7 says
that not only querying but also inserting, updating and deleting multiple
rows should be possible with a single command. In other words, if you want
to delete all of the invoices which are older than five years, you don’t have to
locate each one and delete it individually. You should be able to eliminate
them all with a single command.
The same applies to inserting and updating, so you should be able to issue
one command which, for example, alters the discount rate from 5% to 10% on
all items for which the stock level exceeds the weekly usage by a factor of ten.
This rule is important. For a start it significantly reduces the amount of code
that you have to write in order to carry out complex processes. It also has im-
portant implications as soon as you start to use a system where the database
engine is divorced from the front end. Why? Because the ability to perform

24 • Codd’s rules

210

multi-row changes to a table with a single command dramatically reduces the
communication between the front and back ends. When the link is over a net-
work or, indeed, the internet, this can speed up the whole process by an order
of magnitude.

Physical data independence
Rule 8: Application programs and terminal activities remain logically unim-
paired whenever any changes are made in either storage representations or ac-
cess methods.

Codd expands this rule by saying ‘To handle this, the DBMS must support a
clear, sharp boundary between the logical and semantic aspects on the one hand, and
the physical and performance aspects of the base tables on the other; application pro-
grams must deal with the logical aspects only.’
In practice this means that the logical interaction that the user has with the
database (“I want to find all of the orders which are overdue for payment”)
should be divorced from the physical structure of the tables of data. Suppose
that as a database expands, the database manager decides that an index is
required on a particular table for performance reasons. This rule says that it
should be possible for the index to be added without the users being aware
that any change has been made. They (the users are the ‘terminal activities’
referred to in the rule) and any application programs should be able to work
without any alteration after the index is in place. The only difference they
should see is a reduced response time.

Logical data independence
Rule 9: Application programs and terminal activities remain logically unim-
paired whenever information-preserving changes of any kind that theoretically
permit unimpairment are made to the base tables.

If this one sounds rather like Rule 8, that’s because it is; these rules are often
considered as a pair. As an example of what this one means, suppose that you
have a table of CUSTOMERS that for performance reasons you want to split
into two, CUST_USA and CUST_REST. This allows you to search more rapidly
through the customers in the USA, which is good, but what happens to all
your existing programs and users which/who are used to interacting with an
all-embracing table called CUSTOMERS? This rule says that if a DBMS is to be
considered a relational DBMS, it has to allow both applications and users to
go on dealing with CUSTOMERS as if it hadn’t been split. In practice this can be
done by creating a view (or query) which combines the two new tables into a

24 • Codd’s rules

211

single entity with the original name.
Note that complete conformity with this rule depends on compliance with
Rule 6, the view updating rule. That is the one that says that all views which
are theoretically updatable are also updatable by the system. If Rule 6 isn’t
obeyed, then although we can create a view called CUSTOMER from CUST_USA
and CUST_REST, the users will be unable to interact with the data it contains in
the same way as before.
Rules 8 and 9 are included in the rule set to provide a high degree of flexibil-
ity. Codd describes them in order to split the logical interaction with the data-
base away from the physical and base structuring as much as possible. In
turn this allows the database manager to make changes to the underlying
structure without upsetting the way the user works and without requiring
application programs to be rewritten. As Codd says:
‘The physical and logical independence rules permit data base designers for relational
DBMS to make mistakes in their designs without the heavy penalties levied by nonre-
lational DBMS. This, in turn, means that it is much easier to get started with a rela-
tional DBMS because not nearly as much performance-oriented planning is needed
prior to “blast-off”.’

Integrity independence rule
Rule 10: Integrity constraints specific to a particular relational data base must
be definable in a relational data sub-language and storable in the catalog, not in
the application programs.

A serious rule this one (of course, all rules are equally serious, some are just
more ‘equally serious’ than others). It contains an important expansion:

‘In addition to the two integrity rules (entity integrity and referential integ-
rity) that apply to every relational database, there is a clear need to be able to
specify additional integrity constraints reflecting either business policies or
government policies.’

After this rather oblique reference to referential and entity integrity as an in-
tegral part of relational databases, Codd then goes on to say:

‘To be more specific, the following two integrity rules apply to every rela-
tional database:
Entity integrity. No component of a primary key is allowed to have a null
value.
Referential integrity. For each distinct nonnull foreign key value in a rela-
tional database, there must exist a matching primary key value from the same
domain.’

24 • Codd’s rules

212

Both referential and entity integrity are really important, not to say essential,
parts of a relational database. Why Codd sees fit to introduce them as a mere
addition to another rule is not at all clear. However, we have seen before that
he has a tendency to include essential information as an expansion of a rule;
another example is that no rule explicitly says that an RDBMS needs a data
dictionary, though it is implicit in Rule 4.
Rule 10 says that referential and entity integrity rules must be capable of be-
ing stored in the system catalog rather than in the application programs. This
is clearly essential. If such rules are stored only in the applications, it becomes
easier for a user to accidentally (or maliciously) subvert that integrity.
However, this rule says more: it says that, in addition, an RDBMS needs to be
able to store other integrity constraints and that we have to be able to store
these in the catalog and also to define them in the data sub-language. What
might these ‘other’ constraints be? If you are storing someone’s date of birth
(DOB) and the date of their entry into school (DOE), it is clearly reasonable to
set up a rule stating the DOE must be greater than DOB. In fact, you might
decide that DOE has to be greater than DOB + 4 years. In either case, you
want this rule to be applied in all cases, without argument. Rule 10 says that
you must be able to define such rules in the usual control language that you
use and that you must also be able to store the rule in the data dictionary.
One of the reviewers asked “Doesn’t this rule preclude the enforcement of constraints
by forms?” The answer is “No”. Codd is ensuring, by including this rule, that we
have the ability to enforce rules at the table level if we so wish. He isn’t saying that we
have to do so.

Distribution independence
Rule 11: A relational DBMS has distribution independence.

Codd expands the rule as follows:
‘By distribution independence I mean that the DBMS has a data sub-
language that enables application programs and terminal activities to remain
logically unimpaired:
— when data distribution is first introduced (if the originally installed

DBMS manages nondistributed data only);
— when data is redistributed (if the DBMS manages distributed data).’

One of the huge benefits of networking is that it allows multi-user access to a

24 • Codd’s rules

213

database; that is, the users can be distributed across the network. However, it
is also possible to distribute the data across the same network. Thus you can
have your EMPLOYEES table stored centrally at company headquarters and the
CUSTOMER table held locally at branch level.
This rule says that even if the tables of data are moved around, your users
shouldn’t be aware of the change in location, neither should any applications
that you have developed need to be rewritten. This has several consequences.
For a start, you should be able to develop an application on a stand-alone PC
and then migrate to a fully networked system employing distributed data
without pain. It also means that you should be able to make changes easily to
the distribution of the data. So, if the CEO suddenly decides that all data
must be held centrally, that should be easy to implement.

Nonsubversion rule
Rule 12: If a relational system has a low-level (single-record-at-a-time) lan-
guage, that low level cannot be used to subvert or bypass the integrity rules
and constraints expressed in the higher level relational language (multiple-
records-at-a-time).

To put it another way, a user must not be allowed to go directly to a table and
add, delete or alter records with the low-level language if such a change
would be at odds with the higher level rules (such as referential integrity)
which have been applied to the tables and are stored in the data dictionary.
You may remember, way back in Chapter 2, we talked about the distinction between
the terms row and record. We said that at times it simply isn’t clear which should be
used; in which case you are free to use either. Here is a good case. Ted Codd uses the
term record where many people might use row. If he can be relaxed about it, so can
we.

Summary
So, those are Ted Codd’s original rules for defining an RDBMS. As I said at the
start, there is a fine line to be drawn between accuracy and verbosity and I have
tried to tread it carefully. Nevertheless, it has taken a long time to cover all of
the rules, so long that it may be difficult to see the ‘take home message’. In ad-
dition, the order in which the rules appear is perhaps less than optimal. So, be-
low, I have presented a set of even less exact definitions in what I consider to be
a more reasonable order. They may help you to get the general overall flavor.

24 • Codd’s rules

214

Data must be stored only in tables (Rule 1).
Each table must have a primary key and given the table name, column
name and primary key value, it must be possible to identify unequivo-
cally any piece of data in the database (Rule 2).
The database must have a data dictionary which stores the metadata;
that is, the data which describes the database itself. The data in the data
dictionary must be stored in the same manner as in the main database,
that is, in tables (Rule 4).
Integrity rules, such as referential integrity, should be storable in the
data dictionary (Rule 10).
There must be a single language which allows the database to be ma-
nipulated (Rule 5).
This language must allow multiple updates, inserts etc. to be per-
formed with single commands (Rule 7).
However, neither this language, nor any other, must be able to make
changes to individual records which subvert the integrity rules stored
in the data dictionary (Rule 12).
Physical, logical and distribution changes to the database structure,
such as the addition of an index, the splitting of a table, or the move-
ment of a table onto another disk, should be transparent to the user
(Rules 8, 9 and 11).
Views (answer tables) must be updatable whenever possible (Rule 6).
Nulls must be treated consistently (Rule 3).

As a final exercise, you might want to ask yourself, as Codd suggested all
those years ago “Does my RDBMS really meet all of these rules?”. If it does-
n’t, then it isn’t really a Relational DBMS at all (Rule 0).

25 • Normalization

215

Chapter 25

Normalization

The tables shown in this chapter are not included on the web site since there is very
little that you can do with them. Indeed, some of the tables are demonstrations of how
not to construct a table.

A first look at normalization
Part of the attraction of using an RDBMS is that you can manage large complex
chunks of data. This can have the advantage of unifying the data handling
within your organization. For example, it means that all your customer names
and addresses are stored once only and everyone within the company can ac-
cess up-to-date information. The disadvantage of building complex collections
of tables is that you need to be highly organized – you have to be careful to get
the right data into the correct tables. If you get it wrong, you are likely to find
that some queries are difficult or impossible to build and run. You might, for
example, find it impossible to check for a correlation between the hours that
your sales people spend on the road and their sales of a particular product.
You will also find that you are storing multiple copies of the same information.
As I said in Chapter 12, there is an excellent rule of thumb that we can apply. It
is so important I’ll repeat it here.
As a general rule, you should identify the real world objects that you are trying
to model with your database (Employees, Orders, Customers, Products etc.)
and give each one its own table.
Take this table, for instance.

25 • Normalization

216

It is clearly storing information about the employees in a company. All of the
information in the table refers to the employee and not to any other object. It
is a good, well structured table and easily seen as such because it’s a very sim-
ple table. However, as tables become more complex they can reach a stage
where it is more difficult to decide which fields should go into which tables.
In other words, the rule of thumb is exactly that – a very useful general rule
that works most of the time. It’s not a set of precise rules that can be applied
to all tables so it is comforting to know that there is also a more formal proc-
ess to fall back on when you need it. That process is called Normalization and
it is defined as a series of levels or ‘forms’ – First Normal Form (1NF), Second
Normal Form (2NF) and so on. The first three normal forms are by far the
most important, so we’re going to look at these in detail.
One of the problems with normalization is that being a formal process, it has
a collection of formal expressions/definitions that are associated with it. These
terms provide an excellent short-hand for professional database designers
when they are discussing tables in a large production database but, like all
formal definitions, they can actually get in the way when you are initially
learning the process. We don’t want to bog you down in pages and pages of
formal definitions while we’re explaining normalization because that simply
obscures what is, in truth, a relatively simple process. On the other hand, if
we don’t ultimately give you the formal definitions, we leave you without the
necessary framework to talk to (and ultimately to become) a professional da-
tabase designer. So, we’re going to run through the first three normal forms in
English. Then we’ll go over the formal definitions expanding on the informa-
tion as we do so ending with a final summary of normal forms 1 to 3 using
the formal terminology.

First normal form (first level of normalization): 1NF
First normal form is essentially just a description of a basic table. Remember
that a ‘Table’ (as defined in Chapter 3) has to have a primary key (see Chapter
14), so this requirement is not technically part of the definition of first normal
form because it is assumed that any table we are considering for first normal

EmployeeID FirstName LastName DOB
1 Sally James 01/01/1985
2 Brian Fish 02/04/1986
3 Fred Gribbens 02/05/1985

EMPLOYEES

25 • Normalization

217

form already has a primary key.
Given a table that has a primary key, we can say it is in first normal form if it
doesn’t have multiple columns holding the same kind of data. You’ve already
seen tables that break this rule, and the disastrous effect that it has on the
ability to retrieve data easily. You may remember that in Chapter 14 we
looked at how we could store information about customers who place orders
for multiple items. One of the solutions we discussed looked like this:

As you can see, this table uses multiple columns to represent items that we
sell. In Chapter 14 we had other associated tables – EMPLOYEE, CUSTOMERS
and ITEMS. Looking at ITEMS we can see that item number 3 is a Chair and 4 is
a Table, so order number 3 is for a table and four chairs. The correct informa-
tion is actually stored here but, for all of the reasons already discussed in that
chapter, this is a very poor solution to the problem. This table is not in 1NF.
How can we fix this? Easy, we split it up into two tables that don’t contain
multiple columns for item information – like this:

OrderNo EmployeeNo CustomerNo ItemNo1 ItemNo2 ItemNo3 ItemNo4 ItemNo5
1 1 2 1 4
2 4 1 3
3 1 3 4 3 3 3 3
4 2 4 2 1 3
5 3 2 3 2
6 2 4 2 4
7 2 2 1 2

BAD-ORDERS-TABLE

OrderNo EmployeeNo CustomerNo
1 1 2
2 4 1
3 1 3
4 2 4
5 3 2
6 2 4
7 2 2

ORDERS

25 • Normalization

218

These two tables are in 1NF and the querying problems disappear. Easy.

Second normal form (second level of normalization): 2NF
To be in 2NF a table must already be in 1NF. That is, it must not have multi-
ple columns containing the same kind of data.
Both second and third normal form are concerned with how the information
in one column may depend on that in another column. This dependency is
best illustrated by looking first at a well structured table.

The license number is a unique number issued by the government so EF 8972
refers to one and only one specific car. That means we can use LicenseNo as
the primary key.
We are interested in the dependencies that may exist between the data in the
different columns. For a start, do you think that color depends on the make of
the vehicle? In other words, are all Bentleys black? Well, in practice, many of

OrderNo ItemNo NumberOfItems
1 1 1
1 4 1
2 3 1
3 3 4
3 4 1
4 1 1
4 2 1
4 3 1
5 2 1
5 3 1
6 2 1
6 4 1
7 1 1

ORDER/ITEMS

LicenseNo Make Model Year Color
CER 162 C Triumph Spitfire 1965 Green
EF 8972 Bentley Mk. VI 1946 Black
YSK 114 Bentley Mk. VI 1949 Red

CARS

25 • Normalization

219

them are green but it isn’t an obligatory color scheme and, in fact, the two in
our sample are different colors. So, quite clearly, Color doesn’t depend on
Make. In the same way, for example, Year doesn’t depend on Model because a
particular model of car can be produced for several years.
So are there any dependencies here at all? Yes, all of the columns in the body
of the table (in other words, those columns that aren’t the primary key) are
dependent on the primary key. After all, ‘CER 162 C’ refers to one and only
one car. That car is a Triumph, it is a Spitfire, it was made in 1965 and it’s
green. This dependency holds true for all of the cars, so we can say that, for
example, Color is dependent on LicenseNo, as are Make, Model and Year.
It turns out that this is an excellent way of defining a good table – all of the
columns in the body of the table should be dependent on the primary key. In
fact, 2NF and 3NF are simply concerned with identifying those tables where
this isn’t the case and fixing them.
So let’s take a look at another table.

This is very similar to the table we used above to store information about
which items appear on which order. All I have added is a column to hold the
date of the order.
OK, forget 2NF for a moment. What does your database instinct tell you
about this table? Every time we add another item to the order, we need to re-

OrderNo ItemNo NumberOfItems OrderDate
1 1 1 1/1/2006
1 4 1 1/1/2006
2 3 1 2/1/2006
3 3 4 4/1/2006
3 4 1 4/1/2006
4 1 1 5/1/2006
4 2 1 5/1/2006
4 3 1 5/1/2006
5 2 1 7/1/2006
5 3 1 7/1/2006
6 2 1 8/1/2006
6 4 1 8/1/2006
7 1 1 9/1/2006

ORDER/ITEMS

25 • Normalization

220

peat the date of the order itself. We can see that there is already repeated data
in here and it’s only going to get worse. Instinctively we know that the date of
the order really belongs in a table that contains information about the order
itself (the ORDERS table), so this is a badly designed table.
Now back to 2NF. What does it tell us about table design? It says that each of
the columns in the body of the table should be dependent on the entire pri-
mary key. That means that they must not, for example, be dependent on just
part of the primary key.
In this case the primary key of the table is composed of two columns – Or-
derNo and ItemNo. OrderDate doesn’t depend on both of them together; it sim-
ply depends on OrderNo. That’s only part of the primary key so this table is
not in second normal form.
If this isn’t immediately clear, think of a specific example. Take OrderNo 4.
Every row in the table that has the value 4 in the Order`No column must have
the same date in the OrderDate column (in this case 5/1/2006). Why? Because
OrderDate refers to the data on which the order was placed. If Order 4 had 20
different items in it, there would be 20 rows in this table for that order num-
ber and every one would have a date of 5/1/2006.
The point here is that in this simple table, common sense tells us that we need
to move the OrderDate column to another table – 2NF tell us exactly the same
thing only in a more formal way. As we build more and more complex tables,
common sense becomes more difficult to apply but the 2NF rule remains ex-
actly the same and remains easy to apply.

Third normal form (third level of normalization): 3NF
3NF simply carries on the good work started by 2NF. Remember that we are
trying to achieve a table in which all of the columns in the body of the table
are solely dependent on the entire primary key. 2NF ensures that we deal
with any column that is dependent on part (not all) of the primary key. That
is one kind of undesirable dependency, but there is another. Take a look at
this table.

LicenseNo Make Country PhoneNo Model Year Color
CER 162 C Triumph UK 01234 5678 Spitfire 1965 Green
EF 8972 Bentley UK 04321 1234 Mk. VI 1946 Black
YSK 114 Bentley UK 04321 1234 Mk. VI 1949 Red

CARS

25 • Normalization

221

The new columns, Country and PhoneNo refer to the location and contact de-
tails of the manufacturer of the vehicle. There is clearly a dependency be-
tween each of these new columns and Make. No matter how many different
cars we enter into the table, every time we enter the word Bentley in the Make
column, we will have to enter UK under County and 04321 1234 under
PhoneNo.
Once again, what does your intuition tell you? Hopefully it says that we need
to pull these columns out and put them into a separate table.

Correct. And that is exactly what 3NF tells us. It says, in order for a table to be
in 3NF it has to first be in 1NFand 2NF and, in addition, there must be no de-
pendencies between columns in the body of the table.

Summary so far
First Normal Form (1NF)

Mainly concerned with basic table structure. Table must have a pri-
mary key and there must be no columns that store the same kind of
data.

Second Normal Form (2NF)
Table must already be in 1NF.
Concerned with the relationship between the columns in the pri-
mary key and those in the rest (the body) of the table.

LicenseNo ManufNo Model CC Color
CER 162 C 1 Spitfire 2500 Green
EF 8972 2 Mk. VI 6500 Black
YSK 114 2 Mk. VI 4500 Red

CARS

ManufNo Make Country PhoneNo
1 Triumph UK 01234 5678
2 Bentley UK 04321 1234

MANUFACTURERS

25 • Normalization

222

Each column in the body of the table must be dependent on the en-
tire primary key. As in the example above, given a primary key that
is composed of two or more columns, none of the columns in the
body of the table must be dependent on part of the primary key.

Third Normal Form (3NF)
Table must already be in 1NF and 2NF.
Concerned with the relationships within body of the table.
Columns in the body of the table must not be dependent upon each
other.

Adding some definitions
As you can see, normalization is a very simple process. What we’ll do now is
to add some of the formal definitions for the terms below and, at the same
time, add some more detail about the process of normalization.

Atomic data
Primary key
Table body
Keyed and non-keyed attributes
Functional dependency
Transitive dependency
Lossless decomposition
Requirement definition
Modification anomalies – insert, update and delete

Atomic data
Atomic data is simply a formal way of saying that tables must not contain
repeating information – either within or between columns.

25 • Normalization

223

In this example, CustomerNo contains atomic values, but Items doesn’t; it con-
tains what is called a ‘repeating group’.
Of course, an obvious (and bad) way around this would be to use multiple
columns to contain the repeating group.

Good try, but this is still considered non-atomic data.
As you will already have worked out, 1NF simply says that a table must con-
tain only atomic data – there must be no repeating groups.

Primary keys, table body, keyed and non-keyed attributes
It is often useful, particularly in discussions about normalization, to be able to
distinguish between the columns of the table that make up the primary key
and the rest of the columns in the table. Columns that aren’t primary keys
form the body of the table.
You might wonder why foreign key columns don’t figure in this description.
It is because normalization is performed on each table in isolation and we
aren’t concerned with relationships between tables. Foreign key columns are
simply treated as part of the body.
You can also use the rather formal term ‘keyed attributes’ to refer to the col-
umns that make up the primary key (‘attribute’ being a formal term for col-

OrderNo EmployeeNo CustomerNo Items
1 1 2 1 4
2 4 1 3
3 1 3 4 3 3 3 3
4 2 4 2 1 3
5 3 2 3 2
6 2 4 2 4
7 2 2 1 2

BAD-ORDERS-TABLE

OrderNo EmployeeNo CustomerNo ItemNo1 ItemNo2 ItemNo3 ItemNo4 ItemNo5
1 1 2 1 4
2 4 1 3
3 1 3 4 3 3 3 3
4 2 4 2 1 3
5 3 2 3 2
6 2 4 2 4
7 2 2 1 2

BAD-ORDERS-TABLE

25 • Normalization

224

umn). The rest of the columns are then, of course, the non-keyed attributes.
Or, as a third alternative, you can talk about keyed and non-keyed columns.

Functional dependency
We’ve already talked about dependency, and the formal term for the kind of
dependency we have discussed is ‘functional dependency’. In database terms
we are concerned with the functional dependencies between columns. Func-
tional dependency is very important because we need to understand it in or-
der to be able to ensure that tables are in 2NF and 3NF. So let’s look at another
example.

Order Number 121 was processed by Employee Number 4. Since each row in
this table is recording information about a part of an order, we can have sev-
eral rows for each order. (This is, incidentally, a badly designed table which
my fingers itch to normalize but we are using it for illustrative purposes so
I’ll leave it alone.) If I tell you that in this particular company, only one em-
ployee is ever credited with any given order, you can now be sure that when-
ever you see the value 121 in the OrderNo column, you will find the value 4 in
the EmployeeNo column. There is no doubt, no uncertainty.
Given that information we can say that, in this table:

EmployeeNo is functionally dependent on OrderNo.
OrderNo functionally determines EmployeeNo.
OrderNo is the determinant.

It is important to note that the relationship is one way – we cannot say that
OrderNo is functionally dependent on EmployeeNo. Why not? Well, if you look
at the table and find the value 4 in EmployeeNo you cannot with certainty pre-

OrderNo ItemNo EmployeeNo CustomerNo ItemName Quantity
121 3 4 1024 Nut 3
121 4 4 1024 Bolt 67
121 8 4 1024 Washer 3
122 3 9 176 Nut 9
122 8 9 176 Washer 9
123 3 4 234 Nut 345
123 8 4 234 Washer 345
124 4 9 321 Bolt 9

ORDERS

25 • Normalization

225

dict the value that will be found in OrderNo since in this case it could be 121
or 123.
Which columns are functionally dependent on the primary key
(remembering that in this table the primary key is made up of two columns,
OrderNo and ItemNo)?
Answer – all of them, since the primary key uniquely identifies each row.
Are any of the columns functionally dependent on part of the primary key?
Answer – yes. EmployeeNo and CustomerNo are both functionally dependent
on OrderNo. In addition, ItemName is functionally dependent on ItemNo.
In fact, the only column that is solely functionally dependent on the entire
primary key is Quantity.
As we have said above, you will find that the process of normalization in-
volves attempting to remove various forms of functional dependency. How-
ever, it is worth stressing again that there is nothing wrong with functional
dependencies as such. Indeed in a well designed table, every single column in
the body of the table is functional dependent on the entire primary key, and
not functionally dependent on any other column.
In essence, normalization is all about preserving the functional dependencies
that work to our advantage while removing those that don’t.

Transitive dependency
A relatively subtle one, this, but still useful. Consider this table.

If you remember, the values in Country and PhoneNo refer to the company that
made the vehicle.
LicenseNo is the primary key. The column Year (for example) is functionally
dependent on LicenseNo because the car bearing that LicenseNo was really
made in that year. Make is also functionally dependent on LicenseNo because
there really is a unique car with that license number and it is a Triumph and
only a Triumph. No question.

LicenseNo Make Country PhoneNo Model Year Color
CER 162 C Triumph UK 01234 5678 Spitfire 1965 Green
EF 8972 Bentley UK 04321 1234 Mk. VI 1946 Black
YSK 114 Bentley UK 04321 1234 Mk. VI 1949 Red

CARS

25 • Normalization

226

So far, so clear. In addition, it so happens that the company called Triumph
was (and still is) based in the UK. So Country is also functionally dependent
on LicenseNo but that dependency is dependent (if you’ll pardon the expres-
sion) on Make because we have a chain of dependencies here. ‘CER 162 C’ is a
Triumph and Triumph is based in the UK. So we can say that LicenseNo deter-
mines Make and Make, in turn, determines Country. In other words, the de-
pendency of Country on LicenseNo is reliant on another dependency.
This type of indirect dependency is called a Transitive Dependency.
Why have we bothered to inflict this rather subtle distinction on you? Be-
cause it’s useful. We told you earlier that a good table is one in which all of
the columns are dependent on the entire primary key. That is true, but it is
also a simplification because dependency can be either functional or transi-
tive. And while it is true that Country is dependent on LicenseNo, that depend-
ency is transitive. As soon as we realize that, we know that the Country col-
umn is going to have to move to a new table.
So we can now be more precise in our statement about what makes a good
table. A good table is one where every column is non-transitively dependent
on the primary key.
Incidentally, it is important to note that we aren’t springing a whole new level
of normalization on you here. When we looked at this table earlier in terms of
3NF we spotted the functional dependency between Make and Country. Since
these two columns are in the body of the table, we knew immediately that
they were going to be moved into another table in any case.
Also note that the term ‘transitive dependency’ is useful as shorthand if the
two people involved in a conversation understand it. Imagine that you and I
are discussing the table above. I say something like “Well, the Country column
is fine in this table because it is dependent on the primary key.”
You could say “True, it is dependent on LicenseNo. But that dependency is
actually a result of the functionally dependency that exists between LicenseNo
and Make, and then another between Make and Country. Make and Country are
both in the body of the table. That means that there is a functional depend-
ency between two columns which are in the body of the table, so the table
fails 3NF. All of which means that you are wrong and the Country column
must to be moved to another table.”
Or, you could say “True, but that dependency is transitive via Make.” Which
is a killer argument and ends the discussion – the column will be moved to
another table.

25 • Normalization

227

Lossless decomposition (and requirement definition)
During the process of normalization we often start with one table and end up
with two (or more) because we identify some columns in the first table that
shouldn’t be there, so we move them into a second table. For example, as a
demonstration of 3NF we took this table:

and turned it into these two.

The process of breaking one table down into multiple tables is known as
‘decomposition’ because we are breaking something down into its compo-
nents. If (as we very often do) we also preserve all of the information that was
in the original table, we can also call the process ‘lossless decomposition’.
Lossless implies that the original table could be perfectly reconstructed (if
need be) from the two tables.
Incidentally, some people will use the term ‘projection’ instead of decomposition. Es-
sentially it means the same, it is just a rather more database specific word. See Chap-
ter 28 for more information.

LicenseNo Make Country PhoneNo Model Year Color
CER 162 C Triumph UK 01234 5678 Spitfire 1965 Green
EF 8972 Bentley UK 04321 1234 Mk. VI 1946 Black
YSK 114 Bentley UK 04321 1234 Mk. VI 1949 Red

CARS

LicenseNo ManufNo Model CC Color
CER 162 C 1 Spitfire 2500 Green
EF 8972 2 Mk. VI 6500 Black
YSK 114 2 Mk. VI 4500 Red

CARS

ManufNo Make Country PhoneNo
1 Triumph UK 01234 5678
2 Bentley UK 04321 1234

MANUFACTURERS

25 • Normalization

228

Consider this table:

The data implies that all sales people are paid the same salary and that, while
managers are better paid, they also, as a group, are all paid the same. There
appears to be a functional dependency between Type and Pay. But is this
really a rule or are there exceptions? It matters because if there is a functional
dependency this table is not in 3NF; if there isn’t, then it is in 3NF.
In other words, the data doesn’t tell us the whole story: we need to talk to the
company and find out ‘what the data means’ in this case.
Some databases are well designed from the outset. If this is the case, then all
of these questions will have been resolved before the tables were constructed
and the information will be contained in some form of ‘Requirement Defini-
tion’ which, as the name suggests, formally describes the requirements that
the database has to meet.
Sadly, not every single database that you will meet in your career as a data-
base designer will have a formal requirement definition. Indeed, though it
pains me to mention it, you may come across the odd requirement definition
that contains one or more tiny flaws.
In these cases, you will have to return to the people for whom the database is
being built (or modified) and seek elucidation.
However, the general point is crucial: determining the structure of the data
within a database (in other words, deciding which tables you need and which
data will go into which tables) is impossible without obtaining information
from the people for whom it is being built.
In fact, this brings us to another point. It is sometimes said that, since nor-
malization is a purely mechanical process, surely we could write software to
do it for us. Indeed, some people have written such software; for example,

EmployeeNo LastName FirstName Type Pay
4 Whitehorn Mark Sales Person 25000
5 Jones Sally Manager 40000
6 Williams Henry Sales Person 25000
7 Johnson Margaret Sales Person 25000
9 Smith Fred Manager 40000
12 Smith Sarah Manager 40000
15 Johnson Sally Sales Person 25000
17 Romanus Eithi Manager 40000

STAFF

25 • Normalization

229

Access has a Table Analyzer Wizard that does essentially this. Such software
can be useful, but can never be guaranteed to do a perfect job. The problem is
two-fold. For a start, given only a sample of the data, you can never be sure
that the functional dependencies have been correctly deduced. For example,
in the table above we might, by chance, have 100 rows in which the pay for
each job was always identical. The software would then deduce a functional
dependency that a conversation with the Human Resources manager would
deny. As humans, you and I can have that conversation with the HR manager,
the software can’t. In addition, suppose that you saw this table:

The difference is in the first row – a Sales Pirson (sic) is receiving a salary of
27500. The software would see three job types, each example of each job type
always receives the same salary, so it would deduce a functional dependency.
You and I would see a spelling mistake and an exception that suggested that
no functional dependency existed.
Also remember that, as humans, we absorb a great deal of information and
meaning without even noticing. Take a look at this table:

EmployeeNo LastName FirstName Type Pay
4 Whitehorn Mark Sales Pirson 27500
5 Jones Sally Manager 40000
6 Williams Henry Sales Person 25000
7 Johnson Margaret Sales Person 25000
9 Smith Fred Manager 40000
12 Smith Sarah Manager 40000
15 Johnson Sally Sales Person 25000
17 Romanus Eithi Manager 40000

STAFF

AAA1 AAA2 AAA3 AAA4 AAA5
Sdfg QAA S 43 V2
Njytty DFS A SD 40000
Gho SWA B 42 V
Vhk DCF M 42 V
Boghhok HYU F SD 40000
Herrjhlling FCD J SD 40000
Gfhjk GVV A 42 V
Hghjj JNM P SD 40000

X1

25 • Normalization

230

Unless you speak fluent Venusian, it takes considerably more effort to spot
the potential functional dependencies in this table than in the one above, de-
spite the fact that they have exactly the same structure in terms of columns,
rows and dependencies. You and I would make an assumption that, for ex-
ample, a column called LastName is not a candidate key because, even if we
don’t see any duplicates, we expect them to arise eventually. We cannot say
the same for a column called AAA3.
Unless the normalizing software has quite extensive semantic capabilities, it
can’t deduce information about the meaning of the data. So it would see these
two tables as essentially equivalent in a way that we never do because we
make deductions from the meaning of the information that we see.
The bottom line is that deciding whether functional dependencies really exist
requires common sense, an understanding of the business and often quite
extensive dialogue with the potential users of the system that you are design-
ing.

Modification anomalies – insert, update and delete
Tables that have not been normalized suffer from a number of problems;
that’s why we normalize them. The problems from which they suffer can be
referred to as ‘modification anomalies’. There are three types of modification
anomaly that are possible – update, insert and delete. These are easiest to de-
scribe as examples, so we’ll start with a table that is in dire need of normaliza-
tion.

1. Imagine that this table has, let’s say, 2,000 rows rather than just three and
that 50 of the cars are Bentleys (which would make it a fabulous car collec-
tion). If Bentley (the company) suddenly decides to change its telephone
number, we will have to update 50 rows instead of just one. We are trying to
change one piece of data but we have to alter 50 rows. This is known as an
update anomaly.
2. Suppose that we don’t have a Ford in our collection. We do, however, have
the telephone number for Ford and we want to store it. We now have a prob-

LicenseNo Make Country PhoneNo Model Year Color
CER 162 C Triumph UK 01234 5678 Spitfire 1965 Green
EF 8972 Bentley UK 04321 1234 Mk. VI 1946 Black
YSK 114 Bentley UK 04321 1234 Mk. VI 1949 Red

CARS

25 • Normalization

231

lem because we cannot insert a complete row into this table, we can only in-
sert a partial row. And, if we did that, what would we insert as the primary
key value? This is an example of an insertion anomaly.
3. If we only have one Triumph in the collection and we sell it, we have to de-
lete the row for that car. However, this means we will also delete the phone
number for Triumph which we may not wish to do. This is an example of a
deletion anomaly.
If we normalize these tables:

all three classes of modification anomaly disappear.

Summary (again)
These more formal definitions are useful and, having covered them, we can
now make use of them in redefining the first three normal forms.

First Normal Form (1NF)
Mainly concerned with basic table structure.
Table must have a primary key and all of the data must be atomic.

Second Normal Form (2NF)
Table must already be in 1NF.
Concerned with the relationship between the keyed and non-
keyed columns.
Every non-keyed column must be functionally dependent on the
entire primary key.

LicenseNo ManufNo Model CC Color
CER 162 C 1 Spitfire 2500 Green
EF 8972 2 Mk. VI 6500 Black
YSK 114 2 Mk. VI 4500 Red

CARS

ManufNo Make Country PhoneNo
1 Triumph UK 01234 5678
2 Bentley UK 04321 1234

MANUFACTURERS

25 • Normalization

232

Third Normal Form (3NF)
Table must already be in 1NF and 2NF.
Concerned with the relationships between non-keyed columns.
There must be no functional dependencies between non-keyed
columns.

26 • More about normalization

233

Chapter 26

More about normalization

The only tables from this chapter that you might find useful are the READINGS tables.
They are included in case you want to play around with the SQL statements.

Higher normal forms
It turns out to also be possible to describe normalization in two different ways.
A – you can assume that you know very little about the tables you are normal-
izing. For example, you can assume that you don’t even know which
column(s) will form the primary key. In one sense this is the best way to de-
scribe normalization because the description then covers those rare cases
where you don’t know that information. The down side of describing normali-
zation in this way is that the description becomes much more complex.
B – you can assume that you do, in fact, know the primary key of each table, in
which case the descriptions become much simpler.
As you will have guessed by now, we have taken the easy route and assumed
that we are talking about real tables that have clearly identifiable primary
keys. True, this has made life easier for us (so perhaps we were just being lazy)
but it has also made it easier for you because the explanations are much more
understandable. In addition, in the real world, we don’t really come across ta-
bles where we can’t identify the primary key, so we think the way we have ex-
plained it is genuinely more useful.
However, if you want to know the much more detailed and formal definitions
of normalization we would recommend “An Introduction to Database Systems”
by C.J. Date, published by Addison Wesley ISBN: 0321197844.

26 • More about normalization

234

Not only does Date cover the subject in great depth, he also covers some of
the higher levels of normalization:

BCNF (Boyce-Codd Normal Form) which is a reinforcement of 3NF
Fourth normal form (MVD: MultiValued Dependencies)
Fifth normal form (PJ/NF: Project-Join/Normal Form) also known as
(Projection Join/Normal Form)
DK/NF (Domain Key/Normal Form)

What are these all about? Well, it is possible to construct tables which are in
third normal form yet which still have modification anomalies that can be
removed by lossless decomposition. Normalization is all about making the
database usable so at first sight it seems only reasonable to tell you that you
must normalize all databases to DK/NF and to show you how to do it.
However, this is supposed to be a practical book and in practice very few
people need to think about normalizing above third normal form. If this
sounds unlikely, spend a couple of minutes trying to design a table that is in
third normal form and yet still has modification anomalies.
Perhaps you can, but I found it difficult the first time I tried. The point I’m
trying to make is that tables which are in third normal form and which still
have modification anomalies are very rare. In fact, they are usually counter-
intuitive; in other words, people usually never even think of building them.
This means that most tables that are in third normal form are also in the four
higher levels of normal form mentioned above.
After due consideration I think we’ll stop here. If you are trying to get a data-
base built and you are reading this chapter to ensure that you eliminate most
of the problems that are realistically going to crop up in your database, you
already know enough.

An example
Of course, it is grossly unfair to ask you to try and think of a table that is in
third normal form and yet has modification anomalies and then not show
you one. If you couldn’t come up with one, you now wouldn’t be able to sleep
at night. So, just for amusement (and to illustrate why such tables are con-
trived), consider this.
Suppose we need to store information about the items that we manufacture
in a factory. Each item can be composed of one or more material, and each
has to be subjected to one or more ‘treatments’ after assembly.

26 • More about normalization

235

You can run through the definitions and you should find that the table is in
third normal form.
It has no repeating columns, so it is in first normal form. Then you’ll notice
that all three columns are needed to form the primary key. Second normal
form is all about functional dependencies from the body of the table to the
primary key. This table has no body, so the table has to be in second normal
form. Third normal form is about dependencies within the body of the table.
Again, since there is no body here, the table must also be in third normal
form.
Nevertheless, it has modification anomalies. You will notice that item 27 has
four rows in this table. This is because it is made of two materials and has
two treatments. We need at least two rows to store this information.

However, using only two rows is misleading since it implies that a relation-
ship exists between the material and the treatment. In fact this is not true:
item 27 is not being pressure tested because it is made of steel.
Tempting as it might be, it is also false to assume that we are oil pre-soaking the com-
ponent because it contains paper. We may well have other paper components, such as
user manuals, which it would be highly inappropriate to pre-soak in oil. We are pre-
soaking this item in oil because it is a filter; in other words, there is no direct relation-

INVENTORY
ItemNo Material Treatment
25 Steel Warming
25 Rubber Warming
27 Steel Pressure test
27 Paper Oil pre-soak
27 Steel Oil pre-soak
27 Paper Pressure test
35 Brass Pressure test
35 Brass Flow test
39 Steel Heating
40 Steel Heating

INVENTORY
ItemNo Material Treatment
27 Paper Oil pre-soak
27 Steel Pressure test

26 • More about normalization

236

ship between treatment and material.
In order to make it clear that there isn’t a relationship between material and
treatment, we need to duplicate the rows as shown in the original table. This
in turn leaves us with an update anomaly. If we want to add another treat-
ment to, say, Item 27, we will have to add two more rows.
You see what I mean about contrived. I really don’t think that many people
would have built the initial table in the first place. To resolve the problem
(and to create the structure that I think most people would intuitively have
used in the first place) we can indulge in a little lossless decomposition to
produce:

Normalization doesn’t automatically remove all redundancy
I said above that one of the aims of normalization was to remove redundant
information – and it is. However, it is worth stressing that normalization
doesn’t guarantee to remove all redundancy, it guarantees to remove only that

ItemNo Material
25 Steel
25 Rubber
27 Steel
27 Paper
35 Brass
39 Steel
40 Steel

ITEM-MATERIAL

ItemNo Treatment
25 Warming
27 Pressure test
27 Oil pre-soak
35 Pressure test
35 Flow test
39 Heating
40 Heating

ITEM-TREATMENT

26 • More about normalization

237

redundancy which can be removed by lossless decomposition. Therefore, it is
possible to normalize a table and still have redundancy, and hence update
anomalies, lurking in the tables.
To illustrate this, consider a table which stores information about the readings
taken from electricity meters. Let’s assume that each meter is numbered and
the same meter is never read more than once on the same day. A sensible ta-
ble structure might be:

with MeterNo and Date combining to form the primary key.
However, this table doesn’t show, for example, how much electricity has been
used between each reading.

MeterNo Date Reading
1 18 May 2001 20
1 11 Nov 2001 91
1 12 Apr 2002 175
1 21 May 2002 214
1 01 Jul 2002 230
1 21 Nov 2002 270
1 12 Dec 2002 290
1 01 Apr 2003 324
2 18 May 2001 619
2 17 Sep 2001 712
2 15 Mar 2002 814
2 21 May 2002 913
2 17 Sep 2002 1023
3 19 May 2001 20612
3 11 Nov 2001 21112
3 15 Mar 2002 21143
3 21 May 2002 21223
3 17 Sep 2002 21456
3 21 Mar 2003 22343

READINGS

26 • More about normalization

238

The obvious solution is to run a query to produce an answer table like this:

The problem is this query can take a long time to run if there is a reasonable
number of rows in the table. For example, given 550 rows, the following SQL
statement took 55 seconds to run (on a test machine which is, by today’s stan-
dards, slow but the figure is still useful for comparative purposes).

SOLUTION1
SELECT READINGS.MeterNo, READINGS.Date, READINGS.Reading AS CurrentRead-
ing, Max(READINGS_1.Reading) AS PreviousReading, READINGS.Reading-
Max(READINGS_1.Reading) AS UnitsUsed
FROM READINGS, READINGS AS READINGS_1
WHERE (((READINGS.MeterNo)=[READINGS_1].[MeterNo]) AND
((READINGS.Reading)>[READINGS_1].[Reading]))
GROUP BY READINGS.MeterNo, READINGS.Date, READINGS.Reading;

See Chapter 29 for more information about SQL.
The problem is that the query has to find, in effect, the row that corresponds
to the previous reading for the specific meter. It is this notion of some type of
interconnection between the rows which makes the query tortuous.

MeterNo Date CurrentReading PreviousReading UnitsUsed
1 11 Nov 2001 91 20 71
1 12 Apr 2002 175 91 84
1 21 May 2002 214 175 39
1 01 Jul 2002 230 214 16
1 21 Nov 2002 270 230 40
1 12 Dec 2002 290 270 20
1 01 Apr 2003 324 290 34
2 17 Sep 2001 712 619 93
2 15 Mar 2002 814 712 102
2 21 May 2002 913 814 99
2 17 Sep 2002 1023 913 110
3 11 Nov 2001 21112 20612 500
3 15 Mar 2002 21143 21112 31
3 21 May 2002 21223 21143 80
3 17 Sep 2002 21456 21223 233
3 21 Mar 2003 22343 21456 887

26 • More about normalization

239

One tempting solution is to store a reference to the previous reading in the
base table like this:

Queries which run against this, for example:

SOLUTION2
SELECT DISTINCT READINGS2.MeterNo, READINGS2.Date, READINGS2.Reading AS
CurrentReading, READINGS2_1.Reading AS PreviousReading,
[READINGS2].[Reading]-[READINGS2_1].[Reading] AS UnitsUsed
FROM READINGS2 INNER JOIN READINGS2 AS READINGS2_1 ON READ-
INGS2.PreviousReadingNo = READINGS2_1.ReadingNo
WHERE ((([READINGS2].[Reading]-[READINGS2_1].[Reading]) Is Not Null))
ORDER BY READINGS2.MeterNo, READINGS2.Date;

produce exactly the same answer table as shown above but are very much
faster to run when used with large sets of data (less than two seconds on the
same machine).

ReadingNo MeterNo Date Reading PreviousReadingNo
1 1 18 May 2001 20
2 1 11 Nov 2001 91 1
3 1 12 Apr 2002 175 2
4 1 21 May 2002 214 3
5 1 01 Jul 2002 230 4
6 1 21 Nov 2002 270 5
7 1 12 Dec 2002 290 6
8 1 01 Apr 2003 324 7
9 2 18 May 2001 619
10 2 17 Sep 2001 712 9
11 2 15 Mar 2002 814 10
12 2 21 May 2002 913 11
13 2 17 Sep 2002 1023 12
14 3 19 May 2001 20612
15 3 11 Nov 2001 21112 14
16 3 15 Mar 2002 21143 15
17 3 21 May 2002 21223 16
18 3 17 Sep 2002 21456 17
19 3 21 Mar 2003 22343 18

READINGS2

26 • More about normalization

240

We could even use a table like this:

whereupon the SQL:

SOLUTION3
SELECT DISTINCT READINGS3.MeterNo, READINGS3.Date, READ-
INGS3.CurrentReading,
READINGS3.PreviousReading, CurrentReading-PreviousReading AS UnitsUsed
FROM READINGS3
WHERE (((CurrentReading-PreviousReading) Is Not Null));

becomes trivial and very rapid indeed.
However – and this is the crucial point – the second and third base tables
shown (READINGS2 and READINGS3) are very odd. Despite being normalized
to any and all reasonable levels, both still suffer from update and delete
anomalies. In addition READINGS3 contains redundant data.

MeterNo Date CurrentReading PreviousReading
1 18 May 2001 20
1 11 Nov 2001 91 20
1 12 Apr 2002 175 91
1 21 May 2002 214 175
1 01 Jul 2002 230 214
1 21 Nov 2002 270 230
1 12 Dec 2002 290 270
1 01 Apr 2003 324 290
2 18 May 2001 619
2 17 Sep 2001 712 619
2 15 Mar 2002 814 712
2 21 May 2002 913 814
2 17 Sep 2002 1023 913
3 19 May 2001 20612
3 11 Nov 2001 21112 20612
3 15 Mar 2002 21143 21112
3 21 May 2002 21223 21143
3 17 Sep 2002 21456 21223
3 21 Mar 2003 22343 21456

READINGS3

26 • More about normalization

241

For example, suppose that we discover that Meter No 1 was also read on 01
Feb 2003 and yielded a reading of 300. We can add a record to READINGS2 like
this:

The fact that the row is ‘out of sequence’ (at least, in terms of dates) is of no
consequence whatsoever. However, the addition of this latest record has ren-
dered the pointer in the record with ReadingNo = 8 incorrect. The value that it
has in PreviousReading now points to the wrong row. Unless we locate the er-
rant record and correct it, the table now has an internal inconsistency. It
should be reasonably apparent that deleting records introduces the same sort
of problem.
This is a major problem. Simple updates and/or deletions to/of one record can
cause anomalies in other records. In order to ensure internal data integrity,
some or all of the table has to be checked for integrity after every update. This
is clearly not impossible to do but it makes extra work for the developer and
may well slow the database down, particularly in a multi-user environment.

ReadingNo MeterNo Date Reading PreviousReadingNo
1 1 18 May 2001 20
2 1 11 Nov 2001 91 1
3 1 12 Apr 2002 175 2
4 1 21 May 2002 214 3
5 1 01 Jul 2002 230 4
6 1 21 Nov 2002 270 5
7 1 12 Dec 2002 290 6
8 1 01 Apr 2003 324 7
9 2 18 May 2001 619
10 2 17 Sep 2001 712 9
11 2 15 Mar 2002 814 10
12 2 21 May 2002 913 11
13 2 17 Sep 2002 1023 12
14 3 19 May 2001 20612
15 3 11 Nov 2001 21112 14
16 3 15 Mar 2002 21143 15
17 3 21 May 2002 21223 16
18 3 17 Sep 2002 21456 17
19 3 21 Mar 2003 22343 18
20 1 01 Feb 2003 300 7

READINGS2

26 • More about normalization

242

In addition, even if the developer’s work is perfect, later maintenance work
on the database may unknowingly circumvent the checks and lead to a loss
of integrity.
It is important to realize that normalization doesn’t, on its own, remove all
update and deletion anomalies or even all redundant data.
I became aware of this problem via the database column that I write for Per-
sonal Computer World. (In fact, readers of that magazine provided the solu-
tions shown.) I became intrigued by this idea of normalization being an im-
perfect tool and when I had the privilege of interviewing Chris Date, I
showed him the tables and asked him to discuss them. His answer is enlight-
ening, not just about normalization but about the database design process as
a whole.
Chris Date: “Most of database design is still an art not a science; it’s very subjective,
precisely because it is not, mostly, very scientific. There is some science – normaliza-
tion is a science – but 90% of it is gut feel.
[When] we talk about normalization [we can ask ourselves] ‘What is the effect of nor-
malization?’ Well, basically it’s to reduce redundancy but in order to consider that
question carefully we have to have a careful definition of what redundancy is, but
without getting into such a careful definition (because I don’t think I could give you
one) I will simply point out that normalization per se does not in general eliminate all
redundancy.
What normalization does is – normalization to the ultimate normal form – it gets you
to a position that guarantees that you will not have any anomalies, update anomalies,
that can be removed by taking projections [that is, by splitting the table up into sub-
tables]. Here it is; it doesn’t say it’ll get rid of all anomalies, it just says get rid of
anomalies that can be removed by taking projections. So yes, you can have redun-
dancy and normalization doesn’t help with this question. Normalization is the one
tiny piece of science we have but it is not enough – there are all kinds of other ques-
tions – is this (here he indicated READINGS2) a good design, a bad design? I don’t
know because it is subjective – there is no science there. The only sort of working defi-
nition of redundancy you can have is if somehow you can make something smaller,
then you have redundancy. My gut feel is that it’s a bad design and I can’t quantify
or qualify that really.”

26 • More about normalization

243

Summary
Where does all of this leave the process of normalization? Is it really a useful
process?
Absolutely. Failure to use normalized tables brings the threat of reduced data
integrity. It also may well result in a situation in which certain questions be-
come impossible to ask of a database. Or rather, you are welcome to ask the
question but you will not be able to generate a correct answer. So, normaliza-
tion is very important.
Does this mean that professional database developers spend hours poring
over their tables, ferreting out functional dependencies?
No, but once you get used to building databases you should find that you
don’t either. Most developers, either consciously or unconsciously, apply the
general rule of thumb described at the start of this chapter. In addition, as
people get used to building tables, redundant data begins to stick out like a
sore thumb and they split it out into a separate table as a matter of course.
The combined effect is that good developers build tables that do not contain
redundant data and do not have modification anomalies. Which is, after all,
what normalization is all about.
Is the terminology really useful? Absolutely, as long as you use it as an aid to
communication and not, as I have sadly heard it used, to impress non-
database people over coffee. “Guess what I found this morning? A table in
Simpson’s database with a non-key attribute transitively dependent on the
primary key! Of course I had to give him a written warning.”

27 • The system tables

244

Chapter 27

The system tables

You design tables, you give the tables columns, you name the columns, you
create joins between tables, you build queries etc. Have you ever stopped to
wonder where that information is stored? Where does the database store the
information about which tables have which columns, which tables are joined
and so on?
In a relational database, this information, according to Codd (see Chapter 24)
must be stored in a ‘data dictionary’.
A ‘data dictionary’, also known as a ‘system catalog’, is a centralized store of
information about the database. It contains information about the tables – their
number, names, the columns they contain, data types, primary keys, indexes,
the joins which have been established between those tables (foreign keys), ref-
erential integrity, cascade update, cascade delete etc. This information, stored
in the data dictionary, is called the ‘metadata’.
The next question is “In what way should the data dictionary store the meta-
data?”. In Codd’s view, the answer is quite simple. Tables are where data is
stored, so when we need to store data about the actual database itself that data
has to be stored in tables. It sounds a little recursive but it works well in prac-
tice.
The idea of storing all of this information in tables is to provide consistency.
No matter what information you need from, or about, a database, you will find
it in the same format, i.e. in tables. Given that these tables store system infor-
mation, yet another name for them is the ‘system tables’.
Microsoft Access conforms to this model, though in normal use the data dic-
tionary tables are hidden because they can be dangerous in inexperienced
hands. However, it is interesting (and educational) to play with these tables
and it’s perfectly safe to do so provided you make a copy of the entire database
and put it somewhere safe first. If you don’t take heed of this warning, you
have only yourself to blame if your database goes up in a puff of pink smoke.

27 • The system tables

245

If you do wish to see these tables (in your copy database), click on Tools, Op-
tions, View and choose System Objects. The dictionary tables will then appear
amongst those you’re used to seeing in the normal list of tables. They all start
with the letters MSys which makes them easy to spot. There are several of
them; for instance, there are separate tables for relationships, queries and ob-
jects, and these can be opened and viewed in the normal way. Certain others,
MSysACEs, for example, can only be viewed or modified if you change the se-
curity permissions to allow you to do so. Now I’m not suggesting that you do
modify the structure, but…
To change permissions, first have a look at how the permissions are set for
one of the tables you can access. Click on Tools, Security, User and Group Per-
missions and note the settings. Then do the same for a table that you can’t ac-
cess and make the settings identical.
One of the major functions of a true data dictionary is to enforce the con-
straints placed upon the database by the designer, such as referential integrity
and cascade delete. In the early days of the PC, none of the ‘relational’ DBMSs
offered a true data dictionary but for two reasons this wasn’t a major concern.
Firstly, the early PCs were very slow and incapable of manipulating large,
complex, multi-table sets of data. Instead, they tended to be used for fairly
simple, single-table work (address lists, for example) so the deficiencies in the
DBMS didn’t show up as much as they might have done. Secondly, few PCs
were running truly mission-critical systems, so if the data became a little
‘damaged’, who really cared? (Well, of course, the companies involved cared
very much but the software world which sold the DBMSs didn’t seem overly
concerned.)
So, the early PC-based RDBMSs passed responsibility for this level of control
to the programmer. This meant that writing a totally secure database was per-
fectly possible in, say, dBASE. The snag was that you had to be a good pro-
grammer; it took a great deal of effort and you had to be very familiar with
the relational model. In addition, there was no centralized area where the re-
lationships could be found and examined, so maintenance was difficult. If
you suspected a join was being incorrectly supported, you had to hunt
through, and understand, all of the relevant code to find the area which was
compromising the data.
As PC-based RDBMSs have grown up and come of age, there is now a strong
need for a data dictionary. Access does maintain a data dictionary and, as a
result, doesn’t inflict this extra workload on the developer and, as I said in
Chapter 24, most client-server RDBMSs maintain a data dictionary.

28 • More on queries: data manipulation

246

Chapter 28

More on queries:
data manipulation

Data manipulation is a vital part of the relational model. After all, there is little
point in storing data correctly, safely and securely if that is all you ever do with
it. Stored data has no value if you cannot question it and extract it in some way
for humans to examine. So if you want to know more about databases, you
will probably want to know about querying more than any other part.
In turn, you may want to know about SQL which is covered in the next chap-
ter. SQL is based upon the use of ‘relational operators’ which is what this chap-
ter is all about. You do not need to read this chapter in order to understand the
one on SQL; indeed you can get through the whole of the rest of your life with-
out reading this chapter. The only reason for reading it is that occasionally you
will hear people in the database world referring to ‘Projection’, ‘Union’ etc.
When you want to know what they are talking about, read this chapter. It
won’t change your life (unlike the one on SQL which is full of genuinely useful
information) but it will allow you to understand what other people are talking
about.

Relational operators
Most of us are familiar with the standard algebraic operators (+, -, x and /)
which signify addition, subtraction, multiplication and division. We use these
operators almost without thinking to manipulate numerical values or variables
that represent values.
Thus if we know that A=5, B=6 and C=10 and that D=A+(Bx(C/A)) we can calcu-
late that D=5+(6x(10/5))=5+(6x2)=5+12=17.
In a database, we store the data in tables (also known as relations) and the rela-
tional model provides a set of operators (known, therefore, as relational opera-

28 • More on queries: data manipulation

247

tors) with which we can manipulate tables (that is to say, relations). The dis-
cerning, sensitive reader will have noticed that I am showing a slight ten-
dency to slip into ‘database speak’ at this point. In fact, since the very term
‘relational operators’ includes the word ‘relational’, the temptation to write
this chapter using the more correct terms – relation, tuple, attribute etc. – was
strong. I admit I was tempted. On balance I finally resisted, preferring consis-
tency within the book. However, it is worth noting before we start that tables
are relations and relations are sets of rows.
Also worth noting is that in general RDBMSs do not expect (or even allow)
you to perform relational algebra directly upon tables of data. These opera-
tors are simply the building blocks from which operations like queries are
built up by the RDBMS.
In order to demonstrate these operators we need a sample table or three:

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Bilda Groves 12 Apr 1966 01 May 1999
2 John Greeves 21 Mar 1977 01 Jan 2000
3 Sally Smith 01 May 1977 01 Apr 2002

EMPLOYEES

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

SALES

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $82.78
5 3 Smith Sofa Harrison $235.67
213 3 Williams Suite Harrison $3,421.00
216 2 McGreggor Bed Ford $453.00
217 1 Williams Sofa Harrison $235.67
218 3 Aitken Sofa Harrison $235.67
225 2 Aitken Chair Harrison $453.78

SALES2

28 • More on queries: data manipulation

248

In 1972 Ted Codd proposed a set of eight relational operators, as follows:
Restrict (also known as ‘Select’, but not the same SELECT as found in SQL)
Project
Union
Difference
Intersection
Product
Join
Divide

Other operators are possible but these are by far the most commonly used.
We’ll look at each of them in turn.
Five of these relational operators (Restrict, Project, Product, Union and Difference)
are primitive. That means that they are ‘formally undefined’. Given these five we can
define Intersection, Join and Divide.

Restrict (Select)
Restrict simply extracts rows from a table. Thus if we perform a restriction on
the table SALES where Customer = ‘Simpson’, the result would be:

Project
Projection selects zero or more columns from a table and generates a new ta-
ble that contains all of the rows and only the selected columns. Thus if we
project EMPLOYEES on FirstName and LastName the result is:

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $ 235.67
6 1 Simpson Sofa Harrison $ 235.67

ANSWER

FirstName LastName
Bilda Groves
John Greeves
Sally Smith

ANSWER

28 • More on queries: data manipulation

249

This seems straightforward; however, if we project SALES on EmployeeNo and
Customer the result is:

Despite the fact that SALES has seven rows, the answer table has only six. This
is because one of them:

would be duplicated in the answer table and tables are not permitted to con-
tain duplicated rows.
If we projected SALES on SaleNo, EmployeeNo and Customer then the answer
table will contain seven rows because in the original table the values in
SalesNo are unique.

EmployeeNo Customer
1 Johnson
1 Jones
1 Simpson
2 Jones
2 Smith
3 Smith

SALES

1 Simpson

SaleNo EmployeeNo Customer
1 1 Simpson
2 1 Johnson
3 2 Smith
4 2 Jones
5 3 Smith
6 1 Simpson
7 1 Jones

ANSWER

28 • More on queries: data manipulation

250

Union
Union creates a new table by adding the rows in one table to another. Clearly,
for this to work well, it is essential that the tables have the same structure.
The union of tables SALES and EMPLOYEES is unimaginable because the two
tables are very different in structure. In order for tables to be ‘union compati-
ble’, they must have the same number of columns and each of the column
pairs have to draw their values from the same domains (see Chapter 30 on
domains for more details). The tables SALES and SALES2 are ‘union compatible’
and the result would be this:

Note that two rows:

were shared by the two tables but have appeared only once each in the
ANSWER table because duplicate rows are eliminated. Note also that the order
in which rows appear as the result of a union is unimportant.

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00
213 5 Williams Suite Harrison $3,421.00
216 2 McGreggor Bed Ford $453.00
217 1 Williams Sofa Harrison $235.67
218 4 Aitken Sofa Harrison $235.67
225 4 Aitken Chair Harrison $453.78

ANSWER

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $82.78
5 3 Smith Sofa Harrison $235.67

28 • More on queries: data manipulation

251

Difference
The difference of two tables is a third table which contains the rows which
appear in the first but not in the second. The tables concerned must be union
compatible. Thus the difference of SALES and SALES2 is:

Note that, unlike Union, the order of the tables is vital. Thus the difference of
SALES2 and SALES is not the same:

However, the rows that are ‘missing’ from the two ANSWER tables are the
same:

That is to say in both cases it is the rows that are common to the two base ta-
bles involved in the difference operation which do not appear in the answer
table.

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $ 235.67
2 1 Johnson Chair Harrison $ 453.78
4 2 Jones Suite Harrison $3,421.00
6 1 Simpson Sofa Harrison $ 235.67
7 1 Jones Bed Ford $ 453.00

ANSWER

SaleNo EmployeeNo Customer Item Supplier Amount
213 3 Williams Suite Harrison $3421.00
216 2 McGreggor Bed Ford $ 453.00
217 1 Williams Sofa Harrison $ 235.67
218 3 Aitken Sofa Harrison $ 235.67
225 2 Aitken Chair Harrison $ 453.78

ANSWER

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $ 82.78
5 3 Smith Sofa Harrison $235.67

28 • More on queries: data manipulation

252

Intersect
The intersection of two tables is a third table which contains the rows which
are common to both of them. Thus the intersection of SALES and SALES2 is:

Unlike the difference operation, the order of the tables is unimportant and, of
course, the two tables must be union compatible.
(If at this point you are wondering if Difference and Intersection do essen-
tially the same operation on the data and just keep different bits at the end of
it, you get three gold stars because it shows you’ve been paying attention. I’m
impressed.)

Product
The product of two tables is a third table which contains all of the rows in the
first one, added to each of the rows in the second. Thus if the first table has
three rows, and the second has seven, the product will have 21 rows. The
product of EMPLOYEES times SALES is:

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $ 82.78
5 3 Smith Sofa Harrison $235.67

ANSWER

28 • More on queries: data manipulation

253

EmployeeNo Customer Item Supplier Amount
1 Simpson Sofa Harrison $ 235.67
1 Johnson Chair Harrison $ 453.78
2 Smith Stool Ford $ 82.78
2 Jones Suite Harrison $3,421.00
3 Smith Sofa Harrison $235.67
1 Simpson Sofa Harrison $ 235.67
1 Jones Bed Ford $ 453.00
1 Simpson Sofa Harrison $ 235.67
1 Johnson Chair Harrison $ 453.78
2 Smith Stool Ford $ 82.78
2 Jones Suite Harrison $3,421.00
3 Smith Sofa Harrison $235.67
1 Simpson Sofa Harrison $ 235.67
1 Jones Bed Ford $ 453.00
1 Simpson Sofa Harrison $ 235.67
1 Johnson Chair Harrison $ 453.78
2 Smith Stool Ford $ 82.78
2 Jones Suite Harrison $3,421.00
3 Smith Sofa Harrison $235.67
1 Simpson Sofa Harrison $ 235.67
1 Jones Bed Ford $ 453.00

Note: This is a single table,
the SaleNo and EmployeeNo
fields are adjacent.)

ANSWER
EmployeeNo FirstName LastName DateOfBirth DateEmployed SaleNo
1 Bilda Groves 12 Apr 1956 01 May 1989 1
1 Bilda Groves 12 Apr 1956 01 May 1989 2
1 Bilda Groves 12 Apr 1956 01 May 1989 3
1 Bilda Groves 12 Apr 1956 01 May 1989 4
1 Bilda Groves 12 Apr 1956 01 May 1989 5
1 Bilda Groves 12 Apr 1956 01 May 1989 6
1 Bilda Groves 12 Apr 1956 01 May 1989 7
2 John Greeves 21 Mar 1967 01 Jan 1990 1
2 John Greeves 21 Mar 1967 01 Jan 1990 2
2 John Greeves 21 Mar 1967 01 Jan 1990 3
2 John Greeves 21 Mar 1967 01 Jan 1990 4
2 John Greeves 21 Mar 1967 01 Jan 1990 5
2 John Greeves 21 Mar 1967 01 Jan 1990 6
2 John Greeves 21 Mar 1967 01 Jan 1990 7
3 Sally Smith 01 May 1967 01 Apr 1992 1
3 Sally Smith 01 May 1967 01 Apr 1992 2
3 Sally Smith 01 May 1967 01 Apr 1992 3
3 Sally Smith 01 May 1967 01 Apr 1992 4
3 Sally Smith 01 May 1967 01 Apr 1992 5
3 Sally Smith 01 May 1967 01 Apr 1992 6
3 Sally Smith 01 May 1967 01 Apr 1992 7

28 • More on queries: data manipulation

254

This product operation has been applied quite correctly. However, the astute
reader will note that this table contains seven rows which appear to be
‘meaningful’ and 14 which do not. This is because we are dealing with a raw
operator that takes no account of the values in columns nor of any meaning
that those values may imply or indicate.
In practice, the product operation usually needs to be modified by further
operations in order to yield the answer we want.

Join
Join is a word that has several different meanings in the database world. In
Chapter 29 on SQL you will find the word ‘join’ used in SQL itself, a use that is
derived from this relational operator. In terms of operators, the word has a
fairly specific meaning; it is an operator which behaves just like a mixture of
the Product and Restrict operators. Suppose that you want to examine the sales
that have been made by your employees. In order to do this, you need informa-
tion from both the EMPLOYEES and SALES tables. (In fact, the table SALES2 con-
tains information about more sales and if we wanted to include this informa-
tion we would first use the union operator. However, for the sake of brevity, we
will assume that we are only interested in the sales recorded in SALES.)
The first job is to perform a product on these tables. Next we need to perform
a selection which removes the rows where SALES.EmployeeNo is not equal to
EMPLOYEES.EmployeeNo.
The result would be something like this:

ANSWER
EmployeeNo FirstName LastName DateOfBirth DateEmployed SaleNo
1 Bilda Groves 12 Apr 1956 01 May 1989 1
1 Bilda Groves 12 Apr 1956 01 May 1989 2
1 Bilda Groves 12 Apr 1956 01 May 1989 6
1 Bilda Groves 12 Apr 1956 01 May 1989 7
2 John Greeves 21 Mar 1967 01 Jan 1990 3
2 John Greeves 21 Mar 1967 01 Jan 1990 4
3 Sally Smith 01 May 1967 01 Apr 1992 5

EmployeeNo Customer Item Supplier Amount
1 Simpson Sofa Harrison $ 235.67
1 Johnson Chair Harrison $ 453.78
1 Simpson Sofa Harrison $ 235.67
1 Jones Bed Ford $ 453.00
2 Smith Stool Ford $ 82.78
2 Jones Suite Harrison $3,421.00
3 Smith Sofa Harrison $235.67

Note: This is a single table,
the SaleNo and EmployeeNo
fields are adjacent.)

28 • More on queries: data manipulation

255

Divide
In order to demonstrate division, it will help if we cut down and alter the
SALES table a little, just for this divide operator:

We will also invent a new table called ITEMS which lists the names of one or
more items.

Now, if we divide SALES by this version of ITEMS, we get an answer table like
this:

If we divide SALES by this version of ITEMS:

we get:

Customer Item
Simpson Sofa
Johnson Bed
Smith Stool
Jones Sofa
Smith Sofa
Simpson Sofa
Jones Bed

SALES

Item
Bed

ITEMS

Customer
Johnson
Jones

ANSWER

Item
Sofa

ITEMS

28 • More on queries: data manipulation

256

Finally, if we divide SALES by this version :

we get:

It should be possible to work out from this that the Divide operator is finding
rows in the SALES table which have values in its column Item which match the
values in the table ITEMS. The more values that are supplied in the ITEMS table,
the fewer rows are likely to be returned in the answer table because the
match has to be for all of the data in the ITEMS table.

Summary
The following is not rigorous, nor is it detailed but if you have read and un-
derstood the previous section it should provide a quick reference to remind
you what the operators are and what they do.
Two of the operators (RRestrict and PProject) operate on single tables.

Restriction extracts rows.
Projection extracts columns.

Assuming that each operation is performed on a table with 20 rows, the num-
ber of rows in the answer table will be:

Customer
Simpson
Jones
Smith

ANSWER

Item
Bed
Sofa

ITEMS

ANSWER
Customer
Jones

28 • More on queries: data manipulation

257

Restriction – between 0 and 20
Projection – between 1 and 20 (because duplicates are removed)

The remaining six operators (Union, Difference, Intersect, Product, Join and
Divide) all perform operations on two tables.

Union adds the rows from two tables.
Difference subtracts the rows in one table from those in another.
Intersection locates the rows that are common to two tables.
Product multiplies the rows in the two tables.
Join both multiplies and restricts the rows in two tables.
Divide extracts rows and columns from one table on the basis of data in
the second.

Assuming that each of the following operations is performed on a pair of ta-
bles with 20 and 10 rows respectively, the number of rows in the answer table
will be:

Union – between 20 and 30
Difference – between 10 and 20 (assuming that we subtract the table
with 10 rows from that with 20)
Intersection – between 0 and 10
Product – exactly 200
Join – between 0 and 200
Divide – between 0 and 2

This last figure (for Divide) may seem a little odd. However, as the number of
rows in the divisor table increases, the number of rows in the answer table
drops rapidly. A more realistic case to consider here might be one where we
divide a table with 20 rows by a table with two rows. The number of rows in
the answer table in this case will be between 0 and 10.

29 • SQL

258

Chapter 29

SQL

SQL stands for Structured Query Language, which is pronounced either as S Q
L (as the three letters) or as Sequel. It appears that the former pronunciation is
more common in the UK and the latter in the US but as the two are inter-
changeable it shouldn’t be a cause of anxiety.
SQL is a language that splits neatly into two parts. There is the DDL (Data
Definition Language) section and the DML (Data Manipulation Language) sec-
tion. The former is the part of the language that is used for creating database
objects, such as tables. DDL statements are very rarely written by hand nowa-
days, so we’ll focus this chapter on the DML part.
The majority of the SQL statements shown in this chapter are in an Access file called
CHAP29.MDB. The SQL statements therein are as shown here; in other words, they are
in essentially standard SQL. Since Access will understand standard SQL as well as its
own dialect, the queries will run quite happily. However, if you view the queries using
the Access GUI query builder, it may rewrite the statements in Access SQL dialect.
Please also note that the SQL statements shown are cross-referenced to the queries in
CHAP29.MDB file by name. This name is shown at the left-hand side of the page and
should not be confused with the SQL statement itself, which appears directly below it.
More and more database querying is carried out with a GUI tool; Access has a
great one and I think it’s wonderful. Yet here I am, devoting an entire chapter
to SQL – a nasty reactionary text-based querying system. Why am I doing this
to you?
Delightful as the current crop of querying tools are to use and excellent as they
are for relatively simple questions, they do not have the flexibility to permit
you to formulate certain more complex types of question and this is where
SQL scores. It is endlessly adaptable and knowing something about it is emi-
nently worthwhile for those occasions when it’s the only way of reaching the
answer you desire. If that doesn’t tempt you, remember that in certain social
circles, zero knowledge of SQL can seriously damage your street cred. On the

29 • SQL

259

other hand being able to drop the odd “Why don’t you use a GROUP BY here?”
can make you appear to be a database freak of the first water.
SQL is often referred to as a standard but when you actually start using it you
find that, like most standards, it’s not as standard as all that. The examples
given here are in a generic form of SQL – you may well find discrepancies if
you use another dialect. Having said that, the differences are not great and
should not pose serious problems. For instance, although by default Access
uses a slightly different dialect, it will usually accept this generic SQL quite
happily. The sample queries included with this chapter are written in generic
SQL and almost all will run in Access.
The sample tables shown below are the main tables that are used in the exam-
ples.

EmployeeNo FirstName LastName DateOfBirth DateEmployed CarNo
1 Bilda Groves 12 Apr 1966 01 May 1999 2
2 John Greeves 21 Mar 1977 01 Jan 2000
3 Sally Smith 01 May 1977 01 Apr 2002 5
4 Fred Jones 03 Apr 1996 01 May 2004 3

EMPLOYEES

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

SALES

29 • SQL

260

In the screen shot below you can see the joins between the tables, including
two further tables introduced during the chapter.

SQL statements are, by convention, written in UPPERCASE. The first ones
we’ll look at are SELECT, FROM, DISTINCT and WHERE.

CarNo Make Model
1 Triumph Spitfire
2 Bentley Mk. VI
3 Triumph Stag
4 Ford GT 40
5 Shelby Cobra
6 Ford Mustang
7 Aston Martin DB Mk III
8 Jaguar D Type

CARS

29 • SQL

261

SELECT and FROM
The first of these statements is SELECT. It is used to extract a collection of col-
umns from a given table. FROM simply directs attention to the table in ques-
tion. Thus the statement:

SELECT AND FROM 1
SELECT SaleNo, Item, Amount
FROM SALES;

will yield the following:

SQL doesn’t eliminate duplicates by default, so:

SELECT AND FROM 2
SELECT Item, Amount
FROM SALES;

will yield:

which has duplicated rows.

SaleNo Item Amount
1 Sofa $235.67
2 Chair $453.78
3 Stool $82.78
4 Suite $3,421.00
5 Sofa $235.67
6 Sofa $235.67
7 Bed $453.00

Item Amount
Sofa $235.67
Chair $453.78
Stool $82.78
Suite $3,421.00
Sofa $235.67
Sofa $235.67
Bed $453.00

29 • SQL

262

DISTINCT
You can force SQL to remove the duplicates by using the statement DISTINCT,
which dictates that all rows in the answer table must be unique. The query:

DISTINCT 1
SELECT DISTINCT Item, Amount
FROM SALES;

produces:

WHERE
SELECT lets you choose the columns with which to work and WHERE lets you
choose the rows.

WHERE 1
SELECT Item, Amount
FROM SALES
WHERE Item = ‘Sofa’;

produces:

Item Amount
Bed $453.00
Chair $453.78
Sofa $235.67
Stool $82.78
Suite $3,421.00

Item Amount
Sofa $235.67
Sofa $235.67
Sofa $235.67

29 • SQL

263

while:

WHERE 2
SELECT Item, Amount
FROM SALES
WHERE Item = ‘Sofa’ AND Customer = ‘Smith’;

yields:

You will have noticed a general pattern emerging here (I hope) which is that simple
SELECT commands follow a basic pattern:

SELECT column name(s)
FROM table name
WHERE condition(s)

All sorts of variations are already possible combining SELECT and WHERE state-
ments; as you can see from the last example, WHERE clauses can contain con-
ditions.

Conditions
We’ll digress here to cover the range of conditions that are acceptable within
a WHERE clause. Conditions typically consist of logical expressions which can
be evaluated for truth; in other words, they are checked to discover whether
they are true or false.
Thus if we use the SQL statement:

CONDITIONS 1
SELECT EmployeeNo, FirstName, LastName, DateOfBirth, DateEmployed
FROM EMPLOYEES
WHERE EmployeeNo = 2;

Item Amount

Sofa $235.67

29 • SQL

264

then we can expect the RDBMS to examine every row in the EMPLOYEE table
and place in the answer table only those rows for which the condition:

WHERE EmployeeNo = 2

is true. As you’d hope, this is only true for one row:

A condition is constructed from operators such as:

EmployeeNo FirstName LastName DateOfBirth DateEmployed
2 John Greeves 21 Mar 1977 01 Jan 2000

Symbol Meaning Example Notes Rows returned
from Employee
table

= Equal to EmployeeNo = 2 1
> Greater than EmployeeNo > 2 2
< Less than EmployeeNo < 2 1
<> Not equal to EmployeeNo <> 2 3
>= Greater than

or Equal to
EmployeeNo >= 2 3

<= Less than or
Equal to

EmployeeNo <= 2 2

IN Equal to a
value within
a collection of
values

EmployeeNo IN
(2, 3, 4)

3

LIKE Similar to LastName LIKE “Gr*” Finds Greeves and
Groves. Uses wildcards.
Wild cards vary between
SQL implementations.

2

BETWEEN…
AND

Within a
range of val-
ues, including
the two val-
ues which
define the
limits

EmployeeNo
BETWEEN 2 AND 4.

Equivalent to:
EmployeeNo IN (2, 3, 4)

3

IS NULL Column does
not contain a
value

DateEmployed
IS NULL

0

29 • SQL

265

The following logical operators have a lower priority than those above and
are therefore processed after them, unless parentheses are used to alter prece-
dence.

The following SQL statement asks for a table of the items and amounts from
the SALES table for sale numbers greater than 6:

CONDITIONS 2
SELECT Item, Amount
FROM SALES
WHERE SaleNo > 6;

while this one only wants to see rows relating to sofas for sale numbers
greater than 6:

CONDITIONS 3
SELECT Item, Amount
FROM SALES
WHERE Item = ‘Sofa’ AND SaleNo > 6;

There are none.

Symbol Meaning Example(s) Notes Rows returned
from Sales table

AND Both expressions
must be true in
order for the entire
expression to be
judged true

SaleNo > 3 AND
Customer = “Smith”

AND is evaluated
before OR

1

OR If either or both
expressions are
true, the entire ex-
pression is judged
to be true

SaleNo > 3 OR
Customer = “Smith”

AND is evaluated
before OR

5

NOT Inverts Truth SaleNo NOT IN
(2, 3, 4)

(just as well it isn’t
available for the
real world!)

4

Item Amount
Bed $453.00

29 • SQL

266

This next statement asks for all rows for sofas, suites and beds, regardless of
sale number:

CONDITIONS 4
SELECT Item, Amount
FROM SALES
WHERE Item IN (‘Sofa’, ‘Suite’, ‘Bed’);

and this one adds a condition which specifies rows for the same three pieces
of furniture with sale numbers greater than 6:

CONDITIONS 5
SELECT Item, Amount
FROM SALES
WHERE Item IN (‘Sofa’, ‘Suite’, ‘Bed’) AND SaleNo > 6;

It is worth noting in passing that the use of the operators AND, OR and NOT
may seem counter-intuitive at first. For example, if we alter the operator AND
to OR in the previous statement:

CONDITIONS 6
SELECT Item, Amount
FROM SALES
WHERE Item IN (‘Sofa’, ‘Suite’, ‘Bed’) OR SaleNo > 6;

would we expect more or fewer rows in the answer table? The answer is
more:

Item Amount
Sofa $235.67
Suite $3,421.00
Sofa $235.67
Sofa $235.67
Bed $453.00

Item Amount
Bed $453.00

29 • SQL

267

Intuition might suggest that AND increases the number of rows while OR re-
stricts them but, in fact, the converse is true. As a general rule, the more ANDs
that you add to a condition, the fewer rows appear in the answer table. Of
course, this will depend upon the data. What is always true is that adding
ORs to a condition must leave the number of rows in the answer table the
same or increase it. Adding ANDs must leave it the same or decrease it.
Conditions are nothing if not logical and rendering a series of conditions into
plain English is a good way of understanding what it will do in practice.

ORDER BY
I said earlier that a general pattern was emerging. We can expand it a little now by
adding another clause called ORDER BY to the statement.
The basic pattern is now:

SELECT column name(s)
FROM table name
WHERE condition(s)
ORDER BY column name(s)

ORDER BY gives you control over the order in which rows appear in the an-
swer table generated by the query. You specify the column by which you
want rows ordered, as in the following statement:

ORDER BY 1
SELECT Item, Amount, SaleNo
FROM SALES
WHERE Item = ‘Sofa’
ORDER BY SaleNo;

This is the result:

Item Amount
Sofa $235.67
Suite $3,421.00
Sofa $235.67
Sofa $235.67
Bed $453.00

29 • SQL

268

with the rows ordered by the number of each sale, with the default being as-
cending order. Note that the column used to ORDER BY doesn’t have to appear
as one of those SELECTed although that is typically the case.
If you feel you want to specify the sort order, the command is ASC, as shown
below:

SELECT Item, Amount
FROM SALES
WHERE SaleNo > 2
ORDER BY Item ASC;

This is a perfectly acceptable statement but it’s tautological, being the equiva-
lent of:

ORDER BY 2
SELECT Item, Amount
FROM SALES
WHERE SaleNo > 2
ORDER BY Item;

since ASC is the default.
The next statement:

Item Amount SaleNo
Sofa $235.67 1
Sofa $235.67 5
Sofa $235.67 6

Item Amount
Bed $453.00
Sofa $235.67
Sofa $235.67
Stool $82.78
Suite $3,421.00

29 • SQL

269

ORDER BY 3
SELECT Item, Amount
FROM SALES
WHERE SaleNo > 2
ORDER BY Item DESC;

will produce exactly the same data but it will be sorted differently since DESC,
as you’ll have gathered, sorts rows in descending order.

You can use sorts in both directions, as below:

ORDER BY 4
SELECT Item, Customer, SaleNo, Amount
FROM SALES
WHERE SaleNo > 0
ORDER BY Customer ASC, Amount DESC;

This will sort the customer rows in ascending order, with the amounts each
customer has spent shown in descending order.

If you don’t specify an order in the answer table, the rows will be returned in
any order that the RDBMS thinks is a good idea at the time. (Bill added
‘hopefully chosen for performance or usability reasons!’) In fact, you might
find when you run the SQL statements in the sample Access database, those

Item Amount
Suite $3,421.00
Stool $82.78
Sofa $235.67
Sofa $235.67
Bed $453.00

Item Customer SaleNo Amount
Chair Johnson 2 $453.78
Suite Jones 4 $3,421.00
Bed Jones 7 $453.00
Sofa Simpson 6 $235.67
Sofa Simpson 1 $235.67
Sofa Smith 5 $235.67
Stool Smith 3 $82.78

29 • SQL

270

which don’t contain ORDER BY will show the rows in a different order from
that shown in this book. Remember that if the order of the rows in the answer
table is important to you, you must use an ORDER BY clause.

Wildcards
Wildcards are used in SQL much as they are used elsewhere for occasions
when you want a range of data that fits a certain pattern. The variation below
is not uncommon:

WILD CARDS 1
SELECT *
FROM SALES
WHERE SaleNo > 1;

It gives this result:

In this case, the * symbol is used as a wildcard, meaning ‘all columns’. It’s a
shorthand form of:

WILD CARDS 2
SELECT SaleNo, EmployeeNo, Customer, Item, Supplier, Amount
FROM SALES
WHERE SaleNo > 1;

which yields the same answer table.

SaleNo EmployeeNo Customer Item Supplier Amount
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

29 • SQL

271

Sub-queries
We’ll take another diversion, this time into the realm of sub-queries. You al-
ready know that the WHERE clause makes use of conditions, such as:

WHERE SaleNo > 1
This use of conditions can be expanded into sub-queries to add further refine-
ment to queries. Consider this example:

SUB-QUERIES 1
SELECT Customer
FROM SALES
WHERE EmployeeNo IN
 (SELECT EmployeeNo
 FROM EMPLOYEES
 WHERE DateEmployed > 5/5/1999);

which produces this table:

The statement inside parentheses is known as a sub-query and it would work
perfectly happily as a query all on its own. Incidentally, this is a good case to
illustrate how dialects of SQL differ. Access requires that the date be wrapped
up in # symbols, so in Access the last line reads:

WHERE DateEmployed > #5/5/1999#;
Any operation performed on a table or tables results in another table, one
containing the answer. This is termed ‘closure’ and it is an invariable rule (see
Chapter 15). The sub-query above produces, as you would expect from the
foregoing, an answer table which is shown below:

By looking at the answer table generated by the sub-query, we can see that
the original statement can be simplified to:

Customer
Smith
Jones
Smith

EmployeeNo
2
3
4

29 • SQL

272

SUB-QUERIES 2
SELECT Customer
FROM SALES
WHERE EmployeeNo IN (2,3,4);

and the rows from the SALES table for which this is true are:

and so the query actually yields:

Referring back to the start of the chapter, note that we could eliminate the du-
plicate rows by adding the word Distinct to the first line of the SQL command.
By now, I hope, it is apparent that this SQL statement translates into English
as “Give me the names of all of the customers who have been dealt with by
any employee who was employed after 05 May 1999.”

Built-in functions
SQL includes several simple statistical functions:

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67

Customer
Smith
Jones
Smith

Function

SUM Total

COUNT The number of occurrences

AVG Average

MIN Minimum

MAX Maximum

29 • SQL

273

Thus it is possible (though not normal practice) to write SQL statements such
as:

BUILT-IN FUNCTIONS 1
SELECT SUM(Amount)
FROM SALES;

Some systems will actually accept this. Access, for example, generates a
‘dummy’ field name (Expr1000) and yields the following table:

However, it is more common to explicitly name the column in which the out-
put should be placed. For example:

SELECT SUM(Amount) “Sum of Amount”
FROM SALES;

or:

BUILT-IN FUNCTIONS 2
SELECT SUM(Amount) AS SumOfAmount
FROM SALES;

or even:

BUILT-IN FUNCTIONS 3
SELECT DISTINCT SUM(SALES.Amount) AS SumOfAmount
FROM SALES;

which is how it appears in the Access dialect of SQL.
All three of the above yield a table like this:

The AS followed by a column name simply tells the SQL statement to put the
data into a column of that name in the answer table.

Expr1000
$5,117.57

SumOfAmount
$5,117.57

29 • SQL

274

It is permissible to mix two or more functions, for example:

BUILT-IN FUNCTIONS 4
SELECT SUM(Amount) AS SumOfAmount,
COUNT(Amount) AS CountOfAmount,
AVG(Amount) AS AvgOfAmount,
MIN(Amount) AS MinOfAmount,
MAX(Amount) AS MaxOfAmount
FROM SALES;

which yields:

One of the reviewers added: “In many SQL dialects one writes either:
COUNT(DISTINCT ColumnName)
or
COUNT(*)
not
COUNT(ColumnName)”
It’s also perfectly permissible to mix columns like this:

BUILT-IN FUNCTIONS 5
SELECT COUNT(Customer) AS CountOfCustomer,
AVG(Amount) AS AvgOfAmount
FROM SALES;

giving:

SumOfAmount CountOfAmount AvgOfAmount MinOfAmount MaxOfAmount
$5,117.57 7 $731.08 $82.78 $3,421.00

CountOfCustomer AvgOfAmount
7 $731.08

29 • SQL

275

These functions will even operate correctly on columns which contain no
data. If we amend the base table, for the sake of this example only, to be:

(This table is in the sample .MDB file as ALTEREDSALES)
then the SQL statement:

BUILT-IN FUNCTIONS 6
SELECT COUNT(Customer) AS CountOfCustomer,
AVG(Amount) AS AvgOfAmount
FROM ALTEREDSALES;

(essentially identical to BUILT-IN FUNCTIONS 5) will give:

The COUNT function finds only five values, AVG sums the values that it finds
and divides the result by six (the number of values in that particular column)
rather than seven (the number of rows).
However, these functions are designed to yield only a single figure each.
Thus a SQL statement like:

BUILT-IN FUNCTIONS 7
SELECT Customer,
AVG(SALES.Amount) AS AvgOfAmount
FROM SALES;

is illegal because:
SELECT Customer

can (and in this case would) have an output consisting of multiple rows,
while the second part:

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Stool Ford $82.78
4 2 Jones Suite Harrison
5 3 Smith Sofa Harrison $235.67
6 1 Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

CountOfCustomer AvgOfAmount
5 $282.76

29 • SQL

276

SELECT AVG(SALES.Amount) AS AvgOfAmount
can only have an output of a single row.
Several SQL implementations provide more than the basic functions. For ex-
ample, Access also provides:

It is just this kind of deviation from the standard which demonstrates that
SQL is still a fairly ‘fluid’ language.

GROUP BY – collecting information
GROUP BY seems to be more difficult to understand than some other construc-
tions. Bill agrees; during proofreading he added:
‘GROUP BY seems to confuse everyone. It would be nice to describe what it is trying to
accomplish. Something like ‘Splitting your records into groups and creating one
“summary” record in the answer table for each group.’
Which is a good way to think about it.
So far, our generic SELECT statement looks like this:

SELECT column name(s)
FROM table name
WHERE condition(s)
ORDER BY column name(s)

We can expand it with:
SELECT column name(s)
FROM table name
WHERE condition(s)
GROUP BY column name(s)
ORDER BY column name(s)

Above we looked at the command ORDER BY, which provides a way of pre-
senting information in ascending or descending order. Further control over
your answer data is given by GROUP BY. The syntax is:

Function
StDev Standard Deviation
Var Variance

29 • SQL

277

GROUP BY column name(s)
To illustrate its usefulness, we’ll consider the simple statement below:

GROUP BY 1
SELECT AVG(Amount) AS AvgOfAmount
FROM SALES;

which gives:

This averages the values found in the Amount column for all rows in the
SALES table. Suppose you want to examine the records which refer to cus-
tomer ‘Simpson’. You’d use WHERE, as follows:

GROUP BY 2
SELECT AVG(Amount) AS AvgOfAmount
FROM SALES
WHERE Customer = "Simpson";

Now suppose you want to do this for each customer. An inelegant brute force
solution would be to run the query multiple times, once for each customer. A
particularly clever solution is to get the SQL statement to group the records
together by the name of the customer and then apply the AVG function to the
values in the groups.
We can visualize the process like this. We go from this table:

AvgOfAmount
$731.08

AvgOfAmount
$235.67

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

29 • SQL

278

to this one:

and thence to this, which is a full but compact summary of the required infor-
mation:

The SQL statement required to perform this magic is:

GROUP BY 3
SELECT Customer, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer
ORDER BY Customer;

Impressive, isn’t it?
The GROUP BY clause can be used more simply than this. For example:

GROUP BY 4
SELECT Customer
FROM SALES
GROUP BY Customer;

produces:

SaleNo EmployeeNo Customer Item Supplier Amount
2 1 Johnson Chair Harrison $453.78
7 1 Jones Bed Ford $453.00
4 2 Jones Suite Harrison $3,421.00
6 1 Simpson Sofa Harrison $235.67
1 1 Simpson Sofa Harrison $235.67
5 3 Smith Sofa Harrison $235.67
3 2 Smith Stool Ford $82.78

Customer AvgOfAmount
Johnson $453.78
Jones $1,937.00
Simpson $235.67
Smith $159.23

29 • SQL

279

At first it appears that this is the same as:

GROUP BY 5
SELECT DISTINCT Customer
FROM SALES;

which yields exactly the same answer table but adding another column dem-
onstrates the difference.
Thus:

GROUP BY 6
SELECT DISTINCT Customer, Amount
FROM SALES;

produces:

whereas:

GROUP BY 7
SELECT Customer, Amount
FROM SALES
GROUP BY Customer;

fails to run. Why is this?
Essentially it is for the same reasons that were raised when discussing the
conflict that can arise when using functions. The command:

Customer
Johnson
Jones
Simpson
Smith

Customer Amount
Johnson $453.78
Jones $453.00
Jones $3,421.00
Simpson $235.67
Smith $82.78
Smith $235.67

29 • SQL

280

GROUP BY 8
SELECT Customer
FROM SALES
GROUP BY Customer;

says ‘Sort the records in the SALES table so that identical values in the Cus-
tomer field are together. Then ‘crush together’ the records with identical Cus-
tomer values so that they appear to be one record.’
Thus:

SELECT Customer, Amount
FROM SALES
GROUP BY Customer;

fails because there is a conflict (real in this particular case, potential in other
cases) between the number of rows that should be output. (Grouping by Cus-
tomer, Amount would work, however.)

SELECT Customer
FROM SALES
GROUP BY Customer;

will output four rows:

while:

GROUP BY 9
SELECT Amount
FROM SALES;

 will output seven rows:

Customer
Johnson
Jones
Simpson
Smith

29 • SQL

281

Combining these two incompatible requests is impossible and SQL engines
will refuse the statement.
As you can see from the above, there is no obligation to combine GROUP BY
with one or more of the functions. However, it is commonly done because
often we only want to group records in order to be able to perform some type
of manipulation on selections of records.
It is perfectly possible to GROUP BY more than one column. Thus:

GROUP BY 10
SELECT Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier;

produces more groups than the SQL statement above which grouped by one
column because it is grouping those records which share the same values in
Customer and Supplier. The answer table is this:

which raises another interesting question. How can you tell how many rows
are actually contributing to each group?
One answer (although by no means the only one) is:

Customer Supplier AvgOfAmount
Johnson Harrison $453.78
Jones Ford $453.00
Jones Harrison $3,421.00
Simpson Harrison $235.67
Smith Ford $82.78
Smith Harrison $235.67

Amount

$235.67
$453.78
$82.78
$3,421.00
$235.67
$235.67
$453.00

29 • SQL

282

GROUP BY 11
SELECT Count(*) AS NumberInGroup,
Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier;

The only addition is the ‘Count(*) AS NumberInGroup’ bit which simply says
that the number of rows in each group should be counted.

We could equally well use:

GROUP BY 12
SELECT Count(Customer) AS NumberInGroup, Customer, Supplier,
AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier;

which returns the same answer table.
GROUP BY is an incredibly powerful tool and it can be made even more so
with the addition of HAVING.

GROUP BY…HAVING – collecting specific information
Whereas the GROUP BY clause puts rows into logical groupings, the HAVING
clause allows you to select the groups that you want to see, based on values
which appertain to that group. Consider the example given below:

NumberInGroup Customer Supplier AvgOfAmount
1 Johnson Harrison $453.78
1 Jones Ford $453.00
1 Jones Harrison $3,421.00
2 Simpson Harrison $235.67
1 Smith Ford $82.78
1 Smith Harrison $235.67

29 • SQL

283

GB&H 1
SELECT Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier;

Suppose, now the rows are grouped in this way, that we are only interested in
the groups where the average amount is $250 or more.
The foolish solution is:

GB&H 2
SELECT Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier
ORDER BY AVG(Amount);

which, although it renders the desired values easy to find, still leaves the job
of actually locating them to the user.
Note that I have slipped in an ORDER BY into that last statement. Bill said “Whoa!
ORDER ing groups seems like a whole new concept! Maybe comment somewhere that
‘operations’ on groups are similar to those on records.” He is, as usual, quite right.
A much better solution is:

Customer Supplier AvgOfAmount
Smith Ford $82.78
Smith Harrison $235.67
Simpson Harrison $235.67
Jones Ford $453.00
Johnson Harrison $453.78
Jones Harrison $3,421.00

Customer Supplier AvgOfAmount
Johnson Harrison $453.78
Jones Ford $453.00
Jones Harrison $3,421.00
Simpson Harrison $235.67
Smith Ford $82.78
Smith Harrison $235.67

29 • SQL

284

GB&H 3
SELECT Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier
HAVING AVG(Amount) >= 250;

One reviewer added: “Might be worth saying ‘HAVING is simply a WHERE done after
GROUP ing’.”
You can, of course, still order the groups:

GB&H 4
SELECT Customer, Supplier, AVG(Amount) AS AvgOfAmount
FROM SALES
GROUP BY Customer, Supplier
HAVING AVG(Amount) >= 250
ORDER BY AVG(Amount);

Customer Supplier AvgOfAmount
Johnson Harrison $453.78
Jones Ford $453.00
Jones Harrison $3,421.00

Customer Supplier AvgOfAmount
Jones Ford $453.00
Johnson Harrison $453.78
Jones Harrison $3,421.00

29 • SQL

285

Working with multiple tables
So far we have looked at using the SELECT statement with a single table.
Clearly, since the relational model encourages us to split complex data into
separate tables, we will often find it necessary to recover data from two or
more tables. In order to do this, we have to use the SELECT statement to draw
data from both tables and the WHERE clause to form the joins.
Before we do, let’s try querying the tables without using the WHERE clause.

MULTI-TABLE 1
SELECT SALES.Customer, EMPLOYEES.LastName, SALES.EmployeeNo, EM-
PLOYEES.EmployeeNo
FROM SALES, EMPLOYEES;

This is the result:

29 • SQL

286

It’s plain that this table is full of repetitive data that isn’t at all helpful: we’ll explain
why once we’ve given you a little more detail with which to work.
Note that this SQL statement includes for the first time the table names when
columns are being specified. Up to this point our SELECT statements have re-
ferred to single tables. Since column names within a single table must be
unique, the column name alone allowed us to identify the columns unambi-
guously. However, column names can (and often are) shared by different ta-
bles. For example, both SALES and EMPLOYEES have a column called Employ-
eeNo. Therefore the only way to identify a particular column uniquely is to
use the table name as well. SQL syntax typically has the table name first in

Customer LastName SALES.EmployeeNo EMPLOYEES.EmployeeNo
Simpson Groves 1 1
Simpson Greeves 1 2
Simpson Smith 1 3
Simpson Jones 1 4
Johnson Groves 1 1
Johnson Greeves 1 2
Johnson Smith 1 3
Johnson Jones 1 4
Smith Groves 2 1
Smith Greeves 2 2
Smith Smith 2 3
Smith Jones 2 4
Jones Groves 2 1
Jones Greeves 2 2
Jones Smith 2 3
Jones Jones 2 4
Smith Groves 3 1
Smith Greeves 3 2
Smith Smith 3 3
Smith Jones 3 4
Simpson Groves 1 1
Simpson Greeves 1 2
Simpson Smith 1 3
Simpson Jones 1 4
Jones Groves 1 1
Jones Greeves 1 2
Jones Smith 1 3
Jones Jones 1 4

29 • SQL

287

uppercase, followed by a dot, followed by the column name in lowercase.
SQL allows you to substitute temporary synonyms for table names:

MULTI-TABLE 2
SELECT S.Customer, S.Amount, E.FirstName, E.LastName, S.EmployeeNo,
E.EmployeeNo
FROM SALES S, EMPLOYEES E;

(FROM SALES AS S, EMPLOYEES AS E; is also acceptable).
which can shorten statements considerably but also tends to make them less
readable. Note that although the synonyms are not defined until the FROM
clause, they can still be used in the SELECT clause, which tells you something
about the way in which the SQL statement is read by the RDBMS.
To return to the multiple table query, if we add a WHERE clause like this:

MULTI-TABLE 3
SELECT S.Customer, S.Amount, E.FirstName, E.LastName, S.EmployeeNo,
E.EmployeeNo
FROM SALES S, EMPLOYEES E
WHERE S.EmployeeNo = E.EmployeeNo;

 we get:

Referring to the base tables shows that this is a much more useful answer ta-
ble than the previous one. Essentially this one is letting us look at the data in
the SALES table but instead of seeing the numbers which represent the em-
ployees, we can see their names.
Without a WHERE clause (as in Multi-Table 1), the answer table contains every
row in the SALES table matched against every row in the EMPLOYEE table, giv-
ing 4 x 7 = 28 rows. The WHERE clause ensures that we see in the answer table
only those rows in which the EmployeeNo in SALES matches the EmployeeNo in
EMPLOYEES. This is reasonable since we are using the value in

Customer Amount FirstName LastName S.EmployeeNo E.EmployeeNo
Simpson $235.67 Bilda Groves 1 1
Johnson $453.78 Bilda Groves 1 1
Simpson $235.67 Bilda Groves 1 1
Jones $453.00 Bilda Groves 1 1
Smith $82.78 John Greeves 2 2
Jones $3,421.00 John Greeves 2 2
Smith $235.67 Sally Smith 3 3

29 • SQL

288

SALES.EmployeeNo to indicate which employee made the sale.
In practice, you don’t have to have the EmployeeNo columns visible in the an-
swer table and typically they would be excluded, appearing only in the
WHERE clause.

MULTI-TABLE 4
SELECT S.Customer, S.Amount, E.FirstName, E.LastName
FROM SALES AS S, EMPLOYEES AS E
WHERE S.EmployeeNo = E.EmployeeNo;

It is possible to join more than two tables by adding to the WHERE clause. For
example:

MULTI-TABLE 5
SELECT SALES.Customer, EMPLOYEES.FirstName, CARS.Make, CARS.Model
FROM CARS, EMPLOYEES, SALES
WHERE EMPLOYEES.EmployeeNo = SALES.EmployeeNo
AND EMPLOYEES.CarNo = CARS.CarNo;

Customer Amount FirstName LastName
Simpson $235.67 Bilda Groves
Johnson $453.78 Bilda Groves
Simpson $235.67 Bilda Groves
Jones $453.00 Bilda Groves
Smith $82.78 John Greeves
Jones $3,421.00 John Greeves
Smith $235.67 Sally Smith

Customer FirstName Make Model
Simpson Bilda Bentley Mk. VI
Johnson Bilda Bentley Mk. VI
Simpson Bilda Bentley Mk. VI
Jones Bilda Bentley Mk. VI
Smith Sally Shelby Cobra

29 • SQL

289

Note that this query is finding the car driven by the sales person who dealt with a
given customer, so it isn’t supposed to present particularly meaningful information.
The (SQL-92) SQL standard introduced a new way of expressing joins such
that:

MULTI-TABLE 6
SELECT SALES.Customer, EMPLOYEES.LastName, SALES.Amount
FROM SALES, EMPLOYEES
WHERE SALES.EmployeeNo = EMPLOYEES.EmployeeNo;

which gives:

can be replaced by:

MULTI-TABLE 7
SELECT SALES.Customer, EMPLOYEES.LastName, SALES.Amount
FROM SALES INNER JOIN EMPLOYEES
ON EMPLOYEES.EmployeeNo = SALES.EmployeeNo;

This produces exactly the same answer table and is generally considered to
be more readable. However, it does raise another question: “What is this
INNER business?”

Customer LastName Amount
Simpson Groves $235.67
Johnson Groves $453.78
Simpson Groves $235.67
Jones Groves $453.00
Smith Greeves $82.78
Jones Greeves $3,421.00
Smith Smith $235.67

29 • SQL

290

Inner (Natural) joins
Suppose that your boss says “Give me a list of all the cars and the sales per-
son to whom each is allocated.”
You are immediately tempted to use the SQL statement:

INNER JOIN 1
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS INNER JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo;

but this will give the answer:

which doesn’t list all of the cars because, for instance, that delectable D-type
Jaguar hasn’t been allocated to anyone.
In fact, your boss has phrased the question badly, since her original question
assumes that every car is allocated to an employee and this is not the case.
However, voicing your opinion about her inexact use of English is likely to be
a CLM (Career-Limiting Move). It’s better to keep quiet and find a query
which will list all of the cars and will also show which cars have been allo-
cated to which lucky employees.
But before that, we’ll have a look at what’s wrong with the query shown
above. By default, a join combines the two tables via fields that have identical
values; this is known as a ‘Natural’ or ‘Inner’ join. However, if one or both of
the fields contain exclusive values (I am using the term ‘exclusive’ to mean
that the values are found in one table but not the other) then the join ignores
the rows that are associated with these values. Thus the table CARS has a de-
lightful Aston Martin, CarNo = 7, but since there is no corresponding value in
EMPLOYEES.CarNo, this fine automobile never appears in the answer table.
So, instead of a natural join, what you need to use here is an unnatural join.
OK, I admit it, that was just to see if you were awake. It is really known as an
‘outer’ join.

Make Model FirstName LastName
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

29 • SQL

291

Outer joins
There are two distinct flavors of outer join – left and right.
The following SQL statement:

OUTER JOIN 1
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS LEFT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo;

yields:

Essentially the substitution of LEFT JOIN for INNER JOIN has made all the differ-
ence. It ensures that every row from the first table appears in the answer ta-
ble.
The other flavor of outer join is RIGHT, which simply ensures that every row
in the table on the right-hand side of the join is included in the answer table,
so:

OUTER JOIN 2
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS RIGHT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo;

yields:

Make Model FirstName LastName
Triumph Spitfire
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Ford GT 40
Shelby Cobra Sally Smith
Ford Mustang
Aston Martin DB Mk III
Jaguar D Type

29 • SQL

292

It ought to go without saying (which is another way of saying ‘it is important
to note’) that:

OUTER JOIN 3
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM EMPLOYEES LEFT JOIN CARS
ON CARS.CarNo = EMPLOYEES.CarNo;

produces the same answer table. In other words, the LEFT and RIGHT simply
refer to the tables as named in the SQL statement. So:

FROM EMPLOYEES LEFT JOIN CARS
and

FROM CARS RIGHT JOIN EMPLOYEES
will include all the employees and some of the cars;

FROM CARS LEFT JOIN EMPLOYEES
and

FROM EMPLOYEES RIGHT JOIN CARS
will include all the cars and some of the employees.
So, you can have all of the cars some of the time and indeed all of the people
some of the time. But what you really want to know is, can we have all of the
cars and all of the people all of the time? The answer, not surprisingly, is ‘Yes’.
In order to do so, we can make use of UNION.

Make Model FirstName LastName
 John Greeves
Bentley Mk. VI Bilda Groves
Triumph Stag Fred Jones
Shelby Cobra Sally Smith

29 • SQL

293

UNION
UNION returns all of the rows from two queries and displays them, minus any
duplicates, in a single table. Thus:

UNION 1
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS RIGHT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo
UNION
SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS LEFT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo;

produces:

Clearly the two answer tables that are produced by the separate SELECT
statements must be compatible in order for the UNION to combine them sen-
sibly. So:

UNION 2
SELECT CARS.CarNo, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS RIGHT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo
UNION

Make Model FirstName LastName
 John Greeves
Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves
Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith
Triumph Spitfire
Triumph Stag Fred Jones

29 • SQL

294

SELECT CARS.Make, CARS.Model, EMPLOYEES.FirstName, EMPLOY-
EES.LastName
FROM CARS LEFT JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo;

attempts to put text and numeric data into the same column and should fail.
(In practice, some RDBMSs will allow this and convert the resulting column
to the lowest common denominator, such as text).
However, the result:

may not be particularly meaningful.
The first example I gave for UNION (combining a LEFT and RIGHT join) serves as
an excellent example of the use of UNION but it certainly isn’t the only way in
which it can be used. Suppose that you have another table of sales people
who, for whatever reason, are stored in a separate table from the other em-
ployees.

CarNo Model FirstName LastName
 John Greeves
2 Mk. VI Bilda Groves
3 Stag Fred Jones
5 Cobra Sally Smith
Aston Martin DB Mk III
Bentley Mk. VI Bilda Groves
Ford GT 40
Ford Mustang
Jaguar D Type
Shelby Cobra Sally Smith
Triumph Spitfire
Triumph Stag Fred Jones

EmployeeNo FirstName LastName CarNo
1 Fred Williams 1
2 Sarah Watson 4
3 James Hatlitch 6
4 Simon Webaston
5 Sally Harcourt
6 Martin Boxer
7 Trevor Wright 7

SALESPEOPLE

29 • SQL

295

You want to throw a party for all the employees and to include those sales
people with company cars (because they have volunteered to drive the em-
ployees home afterwards).
You can use:

UNION 3
SELECT FirstName, LastName
FROM EMPLOYEES
UNION SELECT FirstName, LastName
FROM SALESPEOPLE
WHERE SALESPEOPLE.CarNo Is Not Null;

to yield:

You can also use UNION to produce a list of all employees and sales people
who have company cars:

UNION 4
SELECT SALESPEOPLE.FirstName, SALESPEOPLE.LastName, CARS.Make,
CARS.Model
FROM
(CARS INNER JOIN SALESPEOPLE
ON CARS.CarNo = SALESPEOPLE.CarNo)
UNION
SELECT EMPLOYEES.FirstName, EMPLOYEES.LastName, CARS.Make,
CARS.Model
FROM
(CARS INNER JOIN EMPLOYEES
ON CARS.CarNo = EMPLOYEES.CarNo);

FirstName LastName
Bilda Groves
Fred Jones
Fred Williams
James Hatlitch
John Greeves
Sally Smith
Sarah Watson
Trevor Wright

29 • SQL

296

SELECT summary
You are just about to encounter a table which has a column called ‘Foo’. ‘Foo’ is a
word used in computing as ‘a sample name for absolutely anything’. In other words,
in this context it means that the content of this column, and the content of any other
columns which might be in this table, don’t matter; they could be anything. ‘Foo’ is
one of a collection of these terms (others are ‘bar’, ‘baz’, ‘qux’ and ‘fred’) which are
wonderfully known as the metasyntactic variables. This information is of no use to
you whatsoever, except as a long and involved way of saying don’t worry about the
contents of the column called Foo in the next example table.
We have looked at the SELECT statement and its clauses. What I haven’t cov-
ered but is worth stressing is that a familiarity with SQL enables you to use it
with imagination and that’s when it becomes an incredibly powerful tool. For
example, suppose you import a table of data like this one:

into a database and then try to make the column InvoiceNo into a primary key.
This should fail because the column contains duplicate values. In this tiny
table it is easy to find them but what if it had 50,000 rows? The answer is that
with a little imagination, a query will find the errant rows for us.

FirstName LastName Make Model
Bilda Groves Bentley Mk. VI
Fred Jones Triumph Stag
Fred Williams Triumph Spitfire
James Hatlitch Ford Mustang
Sally Smith Shelby Cobra
Sarah Watson Ford GT 40
Trevor Wright Aston Martin DB Mk III

InvoiceNo Foo
1 King
2 Baby Blue
3 Royal
2 Crested
5 Humbolt
2 Jackass

29 • SQL

297

SELECT SUMMARY 1
SELECT InvoiceNo, Count(InvoiceNo) AS NoOfDuplications
FROM INVOICES
GROUP BY InvoiceNo
HAVING Count(InvoiceNo)>1;

SELECT is undoubtedly the most commonly used SQL statement but we
shouldn’t forget the other members of the Data Manipulation Language
(DML): INSERT, UPDATE and DELETE.

INSERT
A brief note about the sample Access database that we provide. It is tempting to open
each query as an SQL view, read it and then look at the answer table by pressing the
‘Datasheet View’ button. This works for most of the examples provided but not the
INSERT, UPDATE and DELETE queries. Press the ‘Run’ button instead.
It is worth bearing in mind that these queries can change the data in the base tables
(one of them deletes the entire contents of a table) so, after running some of them, you
may need to start again with a clean copy of the database from the web site. In addi-
tion, remember that the tables have primary keys, so if you run the same INSERT query
twice without deleting the additional row, the query will fail to run the second time.
INSERT is used to add rows to a table, like this:

INSERT INTO SALES
VALUES (8, 1, "Jones", "Sofa", "Harrison", 235.67);

This is not the only allowable construction. Indeed, Access will run this syn-
tactical construction but if you save the query, Access converts it to:

INSERT 1
INSERT INTO SALES
SELECT 8, 1, "Jones", "Sofa", "Harrison", 235.67;

Both constructions will add this record to the SALES table:

InvoiceNo NoOfDuplications
2 3

29 • SQL

298

Simple, isn’t it? Note that in these first versions we haven’t specified the col-
umn names explicitly, so we have to provide a value for each one in the cor-
rect order.
A slightly more verbose form is possible:

INSERT 2
INSERT INTO SALES (SaleNo, EmployeeNo, Customer, Item, Supplier,
Amount)
SELECT 8, 1, "Jones", "Sofa", "Harrison", 235.67;

which has exactly the same result. We can also add to specific columns:

INSERT 3
INSERT INTO SALES (SaleNo, EmployeeNo, Customer, Amount)
SELECT 9, 1, "Jones", 235.67;

which also adds a single record:

But don’t forget closure. Any operation that we perform on a table (or tables)
in a relational database must have, as its result, another table. So, suppose we
write an INSERT statement like this:

SaleNo EmployeeNo Customer Item Supplier Amount
8 1 Jones Sofa Harrison $235.67

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00
8 1 Jones Sofa Harrison $235.67
9 1 Jones $235.67

29 • SQL

299

INSERT INTO SALES
VALUES
(SELECT *
 FROM SALES2
 WHERE SaleNo > 200);

The table SALES2 looks like this:

and this SQL statement will add the five records for which SaleNo is greater
than 200 to the SALES table.
Closure is important here because the statement within the parentheses:

INSERT 4
SELECT *
 FROM SALES2
 WHERE SaleNo > 200;

generates a table in its own right which is then INSERTed into SALES.
As has been mentioned before, SQL is not always as standard as it should be.
As another example, the syntax for this statement in Access is:

INSERT 5
INSERT INTO SALES
SELECT *
FROM SALES2
WHERE SaleNo > 200;

SaleNo EmployeeNo Customer Item Supplier Amount
3 2 Smith Stool Ford $82.78
5 3 Smith Sofa Harrison $235.67
213 3 Williams Suite Harrison $3,421.00
216 2 McGreggor Bed Ford $453.00
217 1 Williams Sofa Harrison $235.67
218 3 Aitken Sofa Harrison $235.67
225 2 Aitken Chair Harrison $453.78

SALES2

29 • SQL

300

UPDATE
The UPDATE command is wonderfully powerful and allows you to alter the
values in fields.
The general format of the command is:

UPDATE tablename
SET ColumnName(s) = value
WHERE ColumnName = value

although the WHERE condition is optional. Thus:

UPDATE 1
UPDATE SALES
SET Customer ="Smith";

will change:

to:

As you might imagine, this command can be a little devastating in the wrong
hands.

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Smith Sofa Harrison $235.67
2 1 Smith Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Smith Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Smith Sofa Harrison $235.67
7 1 Smith Bed Ford $453.00

29 • SQL

301

The WHERE command generally limits its scope. So:

UPDATE 2
UPDATE SALES
SET Customer ="Smith"
WHERE Customer = "Simpson";

will act on the same initial table to produce:

It is quite possible to use different columns in the SET and WHERE clauses.
Thus:

UPDATE 3
UPDATE SALES
SET Customer ="Smith"
WHERE SaleNo < 5;

produces:

Other variations are possible and indeed common. For example:

UPDATE 4
UPDATE SALES
SET AMOUNT = AMOUNT * 1.1;

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Smith Sofa Harrison $235.67
2 1 Smith Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Smith Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Smith Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Smith Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

29 • SQL

302

will increase all the values in SALES.Amount by 10%, like this:

This sort of variant is particularly useful if profits are slumping.

DELETE
The DELETE command allows you to delete specific records from specific ta-
bles.
The general format of the command is:

DELETE ColumnName(s)
FROM tablename
WHERE ColumnName = value

The ColumnName(s) section of the query can be misleading since it implies
that the DELETE command will simply remove individual fields from records.
This is not the case, the DELETE command removes any and all records which
match the WHERE condition. Rather frighteningly, the WHERE condition itself is
optional. Thus:

DELETE 1
DELETE *
FROM SALES;

is a particularly powerful (not to say dangerous) statement. The output table
looks like this:

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $259.24
2 1 Johnson Chair Harrison $499.16
3 2 Smith Stool Ford $91.06
4 2 Jones Suite Harrison $3,763.10
5 3 Smith Sofa Harrison $259.24
6 1 Simpson Sofa Harrison $259.24
7 1 Jones Bed Ford $498.30

SaleNo EmployeeNo Customer Item Supplier Amount

29 • SQL

303

To be more specific, this command deletes the entire contents of the SALES ta-
ble. Please be aware of the consequences of any injudicious use of this com-
mand.
More commonly (and less alarmingly) the command is used more like this:

DELETE 2
DELETE *
FROM SALES
WHERE EmployeeNo = 2;

which deletes two records and produces:

One of the reviewers wrote “What happens if you put field names into the delete
statement like:

DELETE Customer
FROM SALES
WHERE EmployeeNo = 2;”

It is a good question, and the answer is that this will have exactly the same effect as:
DELETE *
FROM SALES
WHERE EmployeeNo = 2;

In other words, the DELETE statement works only on entire records; specifying fields
has no effect.

A question (and a free SQL diagnostic tool)
The two following SQL statements are perfectly legal and both will run. One
of them will find all of the rows where the SaleNo is greater than 200 and or-
der the answer table by EmployeeNo and SaleNo. The other won’t and is essen-

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67
7 1 Jones Bed Ford $453.00

29 • SQL

304

tially useless. The burning question is “Which is the useful one?”
Is it:

Q1
SELECT *
FROM SALES2
WHERE SaleNo>200
ORDER BY EmployeeNo, SaleNo;

or

Q2
SELECT *
FROM SALES2
WHERE SaleNo>200
ORDER BY EmployeeNo AND SaleNo;

The only difference, to save you wasting time comparing them, is in the
ORDER BY statement.
Answer: Q1 is sensible and returns:

Q2 returns:

SaleNo EmployeeNo Customer Item Supplier Amount
217 1 Williams Sofa Harrison $235.67
216 2 McGreggor Bed Ford $453.00
225 2 Aitken Chair Harrison $453.78
213 3 Williams Suite Harrison $3,421.00
218 3 Aitken Sofa Harrison $235.67

SaleNo EmployeeNo Customer Item Supplier Amount
225 2 Aitken Chair Harrison $453.78
218 3 Aitken Sofa Harrison $235.67
217 1 Williams Sofa Harrison $235.67
216 2 McGreggor Bed Ford $453.00
213 3 Williams Suite Harrison $3,421.00

29 • SQL

305

because it has a very odd construction:
ORDER BY EmployeeNo AND SaleNo

Despite appearances, this does not say, “order the rows by EmployeeNo and
then by SaleNo”. Instead it says “evaluate the expression ‘EmployeeNo AND
SaleNo’ for truth (the answer will come back as -1 (True) or 0 (False)) and then
stack the rows based on this value”, You can prove this to yourself by adding
the expressions which are being evaluated to the list of information that you
want to see.
Thus:

SELECT SaleNo>200 AS ‘SaleNo>200’,
EmployeeNo AND SaleNo AS ‘Emp AND Sale’,
EmployeeNo, SaleNo, Customer
FROM SALES2
WHERE SaleNo>200
ORDER BY EmployeeNo AND SaleNo;

produces:

In all of the rows the expression ‘EmployeeNo AND SaleNo’ happens to evalu-
ate to -1, so the sorting has no effect.
I take the trouble to show you this not because I think you are likely to make
this particular mistake, but if you are human, you will make some mistakes
somewhere along the line. If and when you come across an intractable SQL
statement that runs but doesn’t give you the answer you expect, then you can
use SQL’s own ability to show you the results of expressions as a diagnostic
tool.
Incidentally, Access will run the last SQL statement exactly as shown but
when the query is saved the SQL syntax is converted to:

'SaleNo>200' 'Emp AND Sale' EmployeeNo SaleNo Customer
-1 -1 2 225 Aitken
-1 -1 3 218 Aitken
-1 -1 1 217 Williams
-1 -1 2 216 McGreggor
-1 -1 3 213 Williams

29 • SQL

306

Q3
SELECT SaleNo>200 AS [‘SaleNo>200’],
EmployeeNo AND SaleNo AS [‘Emp AND Sale’],
EmployeeNo, SaleNo, Customer
FROM SALES2
WHERE SaleNo>200
ORDER BY EmployeeNo AND SaleNo;

which is therefore how it appears in the sample database.

Summary
SQL is extremely powerful and, if you spend any time at all with databases, it
well repays the effort required to learn it. One of the best ways to learn it is to
practice using it, which is why the sample database has more than 70 exam-
ple queries.

30 • Domains

307

Chapter 30

Domains

The concept of a domain is a crucial part of the relational model, which is
strange because it is ignored by almost every RDBMS I can call to mind.
A domain is a pool of values from which the values found in a given field in a
particular table can be drawn. For example, suppose that we are defining a
table to hold information about Employees. We decide that we will store the
number of their parents who are living, so we declare a field to have the name
ParentNo and we make it of type Integer. We decide to include only those par-
ents who are related by direct involvement (thus eliminating problems with
uncertain numbers of step-parents) and decide that there are only three possi-
ble values for this field, namely 0, 1 and 2. So, the domain for this field is de-
fined as a subset of integers, namely 0, 1 and 2.
Domains don’t have to contain numeric values. Consider a field called City in
which are stored, quite reasonably, the names of cities. There is a finite number
of cities in the world so the domain for the field contains a finite number of
values such as ‘London’, ‘Seattle’ or ‘Dundee’.
The domain for a field type called Day might well contain the values ‘Monday’,
‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’ and ‘Sunday’.
Domains come into their own when we start to join tables. The bad news is
that very few RDBMSs fully support domains; instead they simply ignore
them. In order to understand why they shouldn’t ignore such a fundamental
(and fundamentally useful) part of relational theory, consider the following
example.

EmployeeNo FirstName LastName DateOfBirth DateEmployed
1 Bilda Groves 12 Apr 1966 01 May 1999
2 John Greeves 21 Mar 1977 01 Jan 2000
3 Sally Smith 01 May 1977 01 Apr 2002

EMPLOYEES

30 • Domains

308

Let’s assume that EMPLOYEES.EmployeeNo, SALES.EmployeeNo and SALES.SaleNo
are of type Integer.
If you join the two tables using the two EmployeeNo fields, then all will be
well. If, however, you make, say a one-to-many join between EMPLOY-
EES.EmployeeNo and SALES.SaleNo then the result will be meaningless.
The typical PC-based RDBMSs of today will happily allow you to make joins
between two fields as long as those fields are of the same data type; in this
case all three fields are of type Integer, so both meaningless and meaningful
joins can be made. However, suppose that we declare two domains like this:

We then declare both of the EmployeeNo fields to be of type Integer and de-
clare that both will draw their values from the domain called Emp. We further
declare SaleNo to be of type Integer and also that it will draw its values from
the domain Sales. Thereafter the RDBMS should only allow us to make joins
between fields which are of the same data type and which draw their values
from the same domain.
Domains are simply another safety mechanism; they prevent later users of
the database from unfortunate errors. Since almost all RDBMSs fail to sup-
port them, they remain a theoretical consideration, which is a shame.

SaleNo EmployeeNo Customer Item Supplier Amount
1 1 Simpson Sofa Harrison $235.67
2 1 Johnson Chair Harrison $453.78
3 2 Smith Stool Ford $82.78
4 2 Jones Suite Harrison $3,421.00
5 3 Smith Sofa Harrison $235.67
6 1 Simpson Sofa Harrison $235.67

7 1 Jones Bed Ford $453.00

SALES

Name of domain Permitted values
Emp Integer between 1 and 2,000 inclusive
Sales Integer between 1 and 100,000 inclusive

31 • What does null mean?

309

Chapter 31

What does null mean?

A given field in a given record can contain data, or not. If you don’t enter a
value into a field in a particular record, you might think that the field was sim-
ply empty, but life isn’t that simple. Instead the field is said to contain a null
value. If, for example, a field is supposed to contain the phone number of a
friend but you don’t know the phone number, you don’t enter any data. The
field is then said to contain a null value.
At the most basic level, a null value simply denotes missing information. I was
talking to a friend on the phone once about a database problem when our con-
versation was suddenly replaced by an electronic tone for about three seconds.
At least, I had heard a tone which blotted out everything else but I had no idea
what my friend had heard. “Did you hear a tone then?”, I asked. “No,” replied
my friend, “I just heard a null.” She hadn’t received any data during those
three seconds – she had received an absence of data.
The odd thing about nulls is that we tend to refer to nulls positively. We don’t
say “The field is empty”; we say, “The field contains a null”, meaning that it
contains nothing.
Nulls can cause unending problems in databases at two distinct levels.
Firstly, at a theoretical level, what exactly is meant by a null has been causing
problems for years. Date, in An Introduction to Database Systems, devotes more
than 20 pages to the problems of trying to represent missing information in a
database. He comes to the conclusion that despite the fact that vendors pro-
vide support for nulls in their products, we should ignore this and not use
nulls at all.
Secondly, in the real world most RDBMSs do support nulls and, of course, peo-
ple make use of nulls in their applications. This causes problems and the prob-
lems are all the more difficult to tie down because of the different ways in
which vendors support nulls!
To try to give a flavor of the problems that they can cause, consider the following.

31 • What does null mean?

310

Imagine a hospital blood bank that receives un-typed blood from various
sources (hopefully human). Each bottle has a unique identifier that is entered
in a table called BLOODBANK, along with the physical location of the bottle in
the store. There is also a field for the Type that is filled in once the blood in
each bottle has been tested in the laboratory. Values such as A+ and O- are
entered as appropriate and a null means that the laboratory report on that
bottle is has not yet arrived.

The hospital also receives patients and each has his or her details entered into
another table, called PATIENTS, along with a unique patient number. All pa-
tients have their blood group determined as soon as possible after admission
and this too goes into the table. If the blood group field for a patient shows a
null value, it means that, for whatever reason, the information is not yet avail-
able from the lab.

If patient 2 is in need of a transfusion, you would query the database to find
which bottles in the store contained blood of the correct type. John is type A+,

Identifier Type
32WWE A+
45555 B+
456FF O-
45FFG AB+
4FGGG
55EE4 B-
676FG A+
FDD5F AB+
FFFF4
FGF66 B-
FGGGG A+
GFGHG A+

BLOODBANK

PatientNo FirstName LastName Type
1 Bilda Groves O-
2 John Greeves A+
3 Sally Smith
4 Fred Jones AB-

PATIENTS

31 • What does null mean?

311

so the query finds several matching entries in the BLOODBANK table.

What about patient number 3? She hasn’t been typed as yet, so what should
happen if we query the database to find blood for her?
The answer should be that no records are returned; that is, no blood is identi-
fied as suitable for this patient. Access handles this ‘correctly’ but not all
RDBMSs do so. Some, for example, match the null values in PATIENTS.Type and
BLOODBANK.Type, suggesting that Sally Smith could be given the blood in
4FGGG or FFFF4. Would you be prepared to put un-typed blood into a patient?
If you were that patient, would you be happy with this arrangement?
Ignoring the arguments about whether RDBMS should support nulls, in my
view when they do they should never treat null values as equal. I know it is
tempting because of the way we use the word ‘null’. Expressions like “Oh,
there is a null value in that field” implies that the field actually contains
something. But remember that a null isn’t a type of entry like a one or a zero,
it is the absence of an entry.
Take another example. Suppose that we are trying to match not patients to
blood but hotel guests to rooms. If a room is occupied, then the guest number
is inserted into a field (ROOMS.GuestNo), otherwise it is left as a null value.
Surely in this case the use of a null value is OK?
No, nulls are being misused here. A null value means that you don’t know the
state of the real-world object represented by the data in the field. Assuming
that the hotel is run correctly, we know which rooms are unoccupied, so a
null value, which implies uncertainty, is inappropriate.
Instead of a null, we might insert an agreed value in here (perhaps a zero) to
indicate an unoccupied room. However, this causes its own problems.
In my less rigorous moments, I have been known to argue that it doesn’t mat-
ter too much how a particular RDBMS treats nulls, as long as that treatment
is always consistent and as long as you are sure you know the rules by which
it operates. However, the bottom line is that I still have a strong preference for
ones that don’t match on nulls. (Bill added “That is what the ‘is null’ operator is
for!”).

FirstName LastName PatientNo Type Identifier
John Greeves 2 A+ GFGHG
John Greeves 2 A+ FGGGG
John Greeves 2 A+ 676FG
John Greeves 2 A+ 32WWE

FindBloodForPatientNo2

31 • What does null mean?

312

The take-home message is that a null doesn’t mean ‘the default value’, nor
does it mean ‘we don’t care what value goes in here’. It means ‘We don’t know
what value goes in here’. The difference, particularly in the blood bank exam-
ple, is vital and could be fatal. But…
...there is a big ‘but’ lurking here. I have only just begun to scratch the surface
of the problems that nulls bring. For each argument that I have raised here,
someone, somewhere has a counter-argument. I would not for a moment
suggest that in a trite thousand or so words I have done anything except alert
you to the fact that there are problems associated with using nulls. Be careful
out there.

32 • Primary keys

313

Chapter 32

Primary keys

In the database column that I write for Personal Computer World, I was discuss-
ing primary keys a while ago and offered the opinion that for a small car resto-
ration business, the registration number (also known as a license number) of
the cars in the workshop would make a good primary key. A reader ques-
tioned this opinion and the point is interesting because it illustrates the scope
that a primary key must cover.
He wrote:
Car registration numbers are very poor primary keys because they can easily change
and therefore do not uniquely identify a vehicle. The chassis or VIN (Vehicle Identifica-
tion Number) is far more suitable although not as easily obtained. People often argue
that the registration number is good enough in the ‘real world’ but would probably not
like to buy a written-off and repaired car just because it had a new reg.
In absolute terms the writer was perfectly correct. However, much as I hate to
be contentious, I am also one of those people who thinks registration numbers
are (sometimes) good enough for the real world. Which brings us neatly to a
point which has a wider relevance than car registration numbers; indeed, it is
an important principle about primary keys in general.
The identifier that you choose as your primary key doesn’t have to be unique
in global terms, it just has to be unique within the context of the database in
which it is used. In other words, a database exists to model a subset of the real
world; as long as the identifier you choose remains unique within that subset,
it is a suitable candidate for a primary key.
For example, if I was building a database which recorded every car in the
country, I would without question use the VIN as the unique identifier because
it is the one property of a vehicle that cannot (legally) be changed. So, there’s
no argument in this case.
However, consider a garage which services and repairs cars. Suppose that the
owner of the garage uses a database to track the work done on the customers’

32 • Primary keys

314

cars and that the sole function of this database is to ensure that each customer
is billed correctly. Within the world of this particular database, the registra-
tion number uniquely identifies the car, so it is an excellent primary key. Even
if the car happens to be legally re-registered during its time in the garage, the
garage proprietor can simply change the registration number in the database
because the new number will still be unique.
Now, let’s make it more complex. Suppose that the garage tracks the service
and repair history of its customers’ cars for several years. The chances are that
one of the cars will eventually be legally re-registered and this will make the
tracking of the car’s service history problematical. So, in this case should the
garage owner use the VIN or the registration number? My practical experi-
ence of garages suggest it would be a disaster to use anything other than the
registration number.
Typically, mechanics fill out worksheets which identify the number of hours
they have worked on each car and they identify the cars by registration num-
ber. Why use the registration number? For the simple reason that it is plas-
tered on the front and back of the car in big letters, so it’s convenient. This
leaves us with a stark choice.
We can elect to use the registration number:

Advantage – easy to find and use
Disadvantage – it may change with time

We can use the VIN number:
Advantage – unlikely to change with time
Disadvantage – inaccessible and tortuously long

We (the designers of databases) have to balance two opposing factors. Using
the chassis/VIN as the primary key protects against problems as cars are re-
registered; using the registration number will cause fewer errors due to finger
trouble. Our job is to choose the lesser of two evils; in this case, I would un-
hesitatingly choose the registration number.
While I have absolutely no experimental evidence to back this up, I have little
doubt that insisting that mechanics use the VIN to identify vehicles would
introduce more errors into the database than we would reasonably expect to
occur from changed registration numbers. In choosing the registration num-
ber we also avoid the wrath of the mechanics who will hate using the VIN.
Indeed, human nature being what it is, if we force them to use the VIN they
might well introduce errors just to spite us.
I also suspect that a garage that welded cars together in a haphazard and ille-

32 • Primary keys

315

gal manner wouldn’t cavil at altering its own database records in the dead of
night.
Before we leave the subject, it is worth noting that genuinely global primary
keys are very difficult to find. For example, even assuming that every person
was honest, chassis/VINs are imperfect. Early in the history of cars, there was
little standardization and several manufacturers (such as Bentley) used very
simple sequences of numbers; a Bentley with chassis number 3 (and hence in
modern parlance, VIN 3) still exists, for example. Other manufacturers will
have done the same, so we are likely to have multiple cars with VIN 3. This
means that in practice, to get a global primary key we would have to use a
key combined from the manufacturer’s name and the chassis/VIN. But for
certain old and valuable cars that have undergone extensive modification,
crash damage and subsequent rebuilding, it has been known for two per-
fectly complete cars from the same manufacturer to vie for the same chas-
sis/VIN!

Candidate keys

In the example above we were discussing a case where one real-world object
(in this case a car) had two possible unique identifiers that could serve as the
primary key – license number and VIN.

In the database world, like all specialized worlds, it is often convenient to
have a shorthand way of referring to a situation. A useful term here is
‘candidate key’ – the implication being that both are candidates for the ex-
alted position of primary key.
So the conversation might go:
Mark: Well, LicenseNo would make a good primary key.
You: Yes, but VIN is also a candidate.
Mark: Oh yes, so it is. Hmm, which is going to be better?

LicenseNo Make Model Year VIN Color
CER 162 C Triumph Spitfire 1965 QQ1234567890 Green
EF 8972 Bentley Mk. VI 1946 AA12345678765 Black
YSK 114 Bentley Mk. VI 1949 AA12345678764 Red

CARS

32 • Primary keys

317

Part 5

Speeding up your
database

33 • Hardware considerations

319

Chapter 33

Hardware considerations

If you are a DBA (DataBase Administrator) you get lots of phone calls every
day. I can’t tell you what your next call will be but I can tell you what it won’t
be. You are quite definitely not about to receive one that starts “The database is
running far, far too quickly. Can you slow it down a bit?” In other words, no
matter how fast the database runs, people always want it to run faster.
With any database (indeed, any application) that isn’t performing well, some-
thing somewhere will be limiting the performance. This limiting factor is often
called a bottleneck. The trick is to identify the bottleneck first before trying to
fix the problem. I realize this sounds obvious, but I have seen several data-
bases where money has been poured into more memory and faster CPUs, nei-
ther of which made the slightest difference because the speed of the database
was being limited by the network speed.
Getting a general feel for where the bottleneck lies doesn’t have to be rocket
science. When you are asked to investigate a slow database, your first move
can be as simple as standing next to the server. If all you can hear is the frenetic
thrashing of the disks, it’s almost certain that CPU cycles are not the limiting
factor. If, on the other hand, all is silence bar the humming of the cooling fans
and the occasional chirrup of a disk, then the CPU(s) and the network are
worth investigating. I’m not suggesting that this is the be-all and end-all of di-
agnosing CPU activity, but it’s a worthwhile rule of ear.
There are two broad ways in which you can make a database faster: you can
either tweak the hardware or the software. In the early days of databases,
hardware was very expensive and so software tuning was often preferred but
that balance is changing, mainly because the cost of hardware is plummeting.
So, let’s take a look at these two broad areas. But first, a warning from your
authors.
One problem with writing about tuning databases is that despite what we
have just said about rockets and science, it can become a complex business. In

33 • Hardware considerations

320

even a small database application there are many factors to consider and
those factors tend to interact. So the easiest way for us to safely cover the sub-
ject of speed tuning is to tell you about the issues but never actually mention
any numbers. For example, we can tell you that ensuring you have adequate
memory is important (which it is) but not actually give you any idea about
how much ‘adequate’ might be. The beauty of this approach is that we never
mislead you; the problem is that it is also likely to be very irritating to read.
You can be left wondering whether 128 Mbytes is adequate or should you be
thinking about 10 TBytes. The alternative is to try and give you ballpark fig-
ures where appropriate and that is what we have tried to do. But, and this is
an important ‘but’, we would never, ever suggest that you base any opera-
tional decisions on the figures we provide here. They are simply there to give
you a feel for the numbers. Talk to other people, seek advice, find out more
about your particular database engine (and even the version you are using)
before you ever think about committing your time and money.
Another reason why we are being careful here is that this and the next three
chapters are simply an overview, not the definitive work. As a rather terrify-
ing example, in this book we devote about 200 words to the subject of disk
I/O (input/output) and speed. The following book devotes 300 pages to the
subject and just covers one particular database engine.

Oracle Disk I/O Tuning: Disk I/O Performance & Optimization for Oracle
Databases by Mike Ault (Author), Donald K. Burleson (Editor) Ram-
pant Techpress (April 2004) ISBN: 0974599344.

So please do treat this as simply an introduction to the subject. Having said
that, we have tried to pack as much information as we can into Part 5, so hope-
fully you’ll find it interesting. We’ll start now with hardware considerations.

CPUs
A shortage of CPU cycles can cause a bottleneck in a database application and
is relatively easy to diagnose and cure. Perform the ear test and then simply
measure the CPU activity. If it/they are flat-lining then the answer is simple –
add more CPUs to the box, move to a box with faster CPUs, turn the database
server into a cluster and/or add more nodes if you’re already clustered.

33 • Hardware considerations

321

Memory
Database engines love memory. The more you give them (within reason) the
faster they will run. Why? Well, they do clever things with it. For example,
suppose that you have a large table that is almost always read and rarely up-
dated. It’s a base table and so, by default, it’s kept on disk. Every query that
runs against it requires one or more disk reads. Disks are slow. When com-
pared with RAM, disks are hundreds or thousands of times slower. If you
give the database an adequate supply of RAM it can cache the table in mem-
ory. Result: the database runs much, much faster.
Then there are queries. Suppose that your users have a very popular view
which also happens to be complex and therefore slow. And let’s also imagine
that they rarely update the base tables that underpin that view. First thing in
the morning, a user opens the view. The engine has to run the underlying
query and then send out the result to the user, but imagine that it then caches
the answer in memory. There is a good chance that another user will run the
query again before the underlying tables are updated. In that case, the engine
can simply pull the result from memory without even touching the base ta-
bles.
And so on and so on but I won’t go on with examples because the truth is that
I don’t know all of the clever tricks that a database engine can do with mem-
ory. The designers of such engines usually keep the more elegant techniques
secret so that their competitors don’t copy the ideas. However, the bottom
line is that, if you give a database engine more memory, it will usually run
faster. This is particularly apparent with multi-user databases.
How much memory is enough? Now that’s the 64 kilo-dollar question. It will
depend on a whole variety of factors such as the size of the database
(obviously), the number of indexes you create (indexes can be cached in
memory), the number of users and so on. In addition, even factors such as the
database size and the distribution of the queries may interact. For example,
suppose you have a 40 GByte database, but it turns out that 99% of the que-
ries only ever hit 1 GByte of the data. In that case, caching more than 1GBtye
of data will never give you more than a tiny increase in speed, so you may
not need as much memory as the size of the database suggests.
Nevertheless, as a very, very general rule of thumb, think in terms of match-
ing the size of the database with RAM. Even as I write that, I can bring to
mind times when that advice is totally inappropriate (200 TBytes of data that
are queried only once a week by a single user) but it gives a kind of ballpark
figure.

33 • Hardware considerations

322

Disks
As you are probably aware, disks can be put together into stacks, often called
RAID (Redundant Array of Independent [or Inexpensive] Disks). Each stack
might contain five physical disks but once they have been turned into a RAID
stack, they appear to the database server to be a single logical drive.
The basic idea of RAID is very simple. A RAID system uses multiple physical
drives to provide both fault tolerance and performance gains. Each piece of
data is written to more than one of the disks. This can, in some case, slow
down write performance marginally but it does ensure that if one disk fails,
all of the data is still accessible. Since the data can be read from more than
one disk (and the RAID controller is usually smart enough to know which
disk can provide the data first) the read performance of the RAID system is
usually enhanced. In practice there are various flavors of RAID (level 0, level
1 and so on) all of which have different characteristics. Choosing the correct
level is important. As a very general rule level 5 is often used for a relational
database although level 1 is sometimes favored in write-intensive applica-
tions.
Since speed and redundancy are both very desirable, you can assume from
now on that every time we use the word ‘disk’ we don’t mean a single physi-
cal disk, we mean a RAID stack of some kind that appears to the database
server to be a single logical drive.

Data volume vs. disk capacity
As a general rule, the larger the capacity of the disk, the faster you can read
data from it and the faster you can write data to it. (Reading and writing to
and from a disk can be described as input/output or I/O).
Disk manufacturers make disks for the average user to use in an average way.
If a disk manufacturers makes a disk of, say, 1 TByte capacity, they give it an
I/O capability that is appropriate for the average use to which that disk will
be put.
Databases are not ‘average’ applications, they are very I/O intensive applica-
tions. So if, for example, you have a database with a size of 1 TByte and you
place it on a 1 TByte drive, it is almost certain that the database will be bottle-
necked by the I/O of the disk. However, you can make use of the correlation
between capacity and I/O performance and put your 1 TByte database on a 5
TByte disk. True, you waste 4 TByte of disk space, but you get the greater I/O

33 • Hardware considerations

323

capability that you need in order to ensure that the disk is not limiting the
performance of your database.

Don’t put all your eggs in one basket
As mentioned above, disk I/O is a slow process, relatively speaking, because
it takes place within a physical device.
Disk drives have heads which read data from, and writes it to, the disk itself. It’s
rather like the arm on a turntable, except that scratching is not recommended practice
with disk drives.
Head movement is physical and hence very, very slow. Performance can
therefore be improved by minimizing the travel undertaken by the read/write
head inside the disk drive. We can do this by keeping different files on differ-
ent disks – a good rule of thumb is to put the data on one, the indexes on a
second and the log files on a third. (There’s more about indexes in the next
chapter, and log files are covered in Chapter 23).
As an example, imagine what happens if the data and log files are placed to-
gether on one disk. When a row is updated in a table, the head of the disk
drive has to be physically moved until it is over the correct part of the disk
and a write performed. Once the row has been updated, the transaction must
be recorded in the log files. So the head has to be moved until it is over the
log file and another write performed. After that, it has to be moved back to
the data and so on. In other words, the head spends the majority of its time
thrashing across the disk between the data and the log files.
If, on the other hand, the data and logs are kept on separate disks, the head of
one drive can sit over the data, moving only slightly each time it needs to ac-
cess another row. The head in the other drive hovers over the log file, ap-
pending to it as required.
The benefits of storage on separate disks are even more apparent if you con-
sider indexing. Given a one million row table, using an index to locate a spe-
cific row means the database engine has to jump between the data and the
index anything up to twenty times. If both the data and the indexes are on the
same disk that’s twenty head moves which is going to be painfully slower.
One of the joys of Access is that the entire database application is wrapped up
inside a single .MDB file. You can, if you wish, split the user interface from the
data (as discussed in Chapter 20 – Database architecture) but Access does not let
you split the data from the indexes, and Access keeps no log files. The good
news is that while all of the foregoing chapter is absolutely true about other da-
tabase engines, you don’t have to worry about it at all as an Access developer.

34 • Indexing

324

Chapter 34

Indexing

Indexing is the first topic we’ll cover in the area of software optimization of
database performance.

Indexing techniques
In almost all databases, the largest single improvement you can make to their
performance is by applying indexes and they are very cost-effective to imple-
ment. Virtually all gain and no pain; so, what is an index and how does it
work?
Incidentally, the plural of index is actually ‘indices’ but in the computing world peo-
ple typically use the word ‘indexes’ so we have followed suit.
One way to describe an index is to tell you, very briefly, how and why we use
them. Imagine that you have a 20 million row table which has many columns,
one of which is LastName. You query the table looking for “Whitehorn” in the
LastName column. It takes 2 hours to return an answer set of one row. You
then apply an index to the LastName column and rerun the query. It takes
three seconds to return the same one row. In a nutshell, that is why we are all
interested in indexes. They can speed up the access to data by several orders
of magnitude. The next question is “How do they work?”
Well, humans can manipulate lists efficiently, as long as they are sorted –
that’s why we are taught the alphabet from an early age. An RDBMS can do
the same trick on any set of sorted values and therefore find data much more
rapidly. So, in essence, an index is simply a sorted list of values.

Binary chop
How does a database engine search a sorted list? Well, there are several ways,
and a very common one is the binary chop.

34 • Indexing

325

Here is a tiny sorted list. Imagine that it contains 1 million sorted items rather
than the paltry nine that are shown.

Let’s assume that somewhere in those 1 million items, one is ‘Smith’. The data-
base engine doesn’t start at the top of the list; instead it jumps to the middle
(item 500,000) and reads the item. This happens to be ‘Melville’. Since M comes
before S in the alphabet, it is now certain that ‘Smith’ is somewhere below the
middle point of the list – in other words, somewhere within items 500,001 to
1,000,000. By making a single read of the list, the engine has eliminated half of
the items from the search process.
Now it takes the remaining set of 500,000 and reads the middle item of that set.
That is ‘Robertson’, so ‘Smith’ must be located in the first 250,000 of this new
set, so the database engine can safely ignore the second half.
You can see the pattern that is emerging. By always reading the middle item in
the remaining set, the engine can, with each read, eliminate half the remaining
items. So, given 1,000,000 rows, how many reads do we need to get down to
one possible row?

LastName
Cooper
Falconer
Lynch
Lynch
McColgan
Robb
Thompson
Wellington
Wellington

34 • Indexing

326

Answer: assuming the worst case, it only takes 20 reads to guarantee finding
any item in a list of 1 million values, as long as the list is sorted, and we may
well find it in fewer reads. If the column isn’t sorted and we are very unlucky,
we’ll need to read all 1,000,000 items; on average we’ll find the item after
500,000 reads.
That’s a maximum of 20 reads with an index versus an average of 500,000
without. That, in a nutshell, is why indexes are so much faster.
This reason for the name of this technique – binary chop – is now, hopefully,
clear. Each read of the list chops the number of remaining items to be read in
half. Binary chops are almost frighteningly efficient and, even more unnerv-
ingly, their efficiency actually increases as the number of items in the list in-
creases. We can see this if we consider the number of chops necessary for dif-
ferent numbers of items.

Reads No. of items remaining
0 1,000,000
1 500,000
2 250,000
3 125,000
4 62,500
5 31,250
6 15,625
7 7,813
8 3,907
9 1,954
10 977
11 489
12 245
13 123
14 62
15 31
16 16
17 8
18 4
19 2
20 1

34 • Indexing

327

Very roughly, increasing the size of the list by an order of magnitude (making
it ten times larger) only adds another 3 or 4 chops. Wow.
For reasons that will shortly become clear, there are two different flavors of
index – clustered and non-clustered. The database engine can utilize the bi-
nary chop technique to search either flavor.

Clustered indexes
A clustered index works by actually moving the rows on disk so that they are
physically stored in sorted order. For example, consider a table with five col-
umns. If we apply a clustered index to the LastName column, the rows will all
be moved so that they are in the order shown.

The LastName column has become the sorted list which means that the data-
base can find any value in this column (e.g. ‘Robb’) very rapidly and it can
use a binary chop to do so.

Number of items Maximum number of reads to find one item
100 7
1,000 10
10,000 14
100,000 17
1,000,000 20
10,000,000 24
100,000,000 27
1,000,000,000 31

CustomerNo Title LastName FirstName Town
6 Ms. Cooper Norah Seattle
8 Mrs. Falconer Grace London
7 Ms. Lynch Helen Boston
5 Mr. Lynch Colin London
3 Prof. McColgan Harry Seattle
9 Mrs. Robb Mary Dundee
1 Mr. Thompson Brian Boston
4 Dr. Wellington Sandra Boston
2 Miss Wellington Helen Dundee

CUSTOMERS

34 • Indexing

328

However, bear in mind that while a clustered index on one column speeds up
the access to the data in that column dramatically, it doesn’t help for any of
the other columns. For example, in order to find all of the people with
FirstName = ‘Helen’, the database engine would have to examine every row.
Of course, if you need the database to find all of the Helens rapidly, you
could apply a clustered index to the FirstName column instead, in which case
all of the rows would be re-sorted on the disk:

This is fine but that sort has now disrupted the original sort by LastName, so
if you ask the engine to find the Robbs, it will be slow again because it has to
check every single row.
The crucial problem here is that a table can only ever be sorted in one particu-
lar way at a time. In turn that means that you can only ever have one clus-
tered index for each table.
Of course, there is no reason why you can’t create a single clustered index on
more than one column at the same time. For example, the table below has
been cluster indexed on both the LastName and FirstName columns.

CustomerNo Title LastName FirstName Town
1 Mr. Thompson Brian Boston
5 Mr. Lynch Colin London
8 Mrs. Falconer Grace London
3 Prof. McColgan Harry Seattle
7 Ms. Lynch Helen Boston
2 Miss Wellington Helen Dundee
9 Mrs. Robb Mary Dundee
6 Ms. Cooper Norah Seattle
4 Dr. Wellington Sandra Boston

CUSTOMERS

34 • Indexing

329

The rows are sorted initially by LastName. Where there are two or more rows
with identical values in LastName (Lynch, for example), these rows are or-
dered by the value in FirstName.
This two-column clustered index makes it easy to find any value in LastName.
In addition, it makes it easy to find a specific combination of LastName and
FirstName (‘Wellington’ ‘Helen’, for example). However, even though the
FirstName column is part of an index, this particular index doesn’t help the
database engine to find all Helens because they are still scattered throughout
the table. To find all instances of a first name, a complete table scan is re-
quired (which means all rows must be inspected).
So, clustered indexes are very fast and they can be applied to multiple col-
umns, but we can still only ever have one clustered index per table. Neverthe-
less clustered indexes are great because they are the fastest index around and
they are the most important step towards fast query response times. Almost
all database engines will automatically (and without consulting you) apply
the one clustered index that logic allows for a table to the primary key col-
umn(s). That means that all of the rows in a table are sorted on disk according
to the values in the primary key.
The description we’re giving you is, almost inevitably, a simplification. If what we
have described was implemented literally, the result would be horribly flawed. Suppose
a table holds primary key values including 1, 3, 4, 5 and so on up to 20 million (the
value 2 having been omitted). If a row is ever inserted with the primary key value of 2,
the database engine would have to physically move 19,999,999 rows on the disk in
order to slot the new row into its place. In practice this isn’t necessary because clus-
tered indexes are complex entities and are implemented with great care. Despite this,
the basic description that we have given you remains perfectly true: the engine really
does physically move the rows around on disk when you apply a clustered index.

CustomerNo Title LastName FirstName Town
6 Ms. Cooper Norah Seattle
8 Mrs. Falconer Grace London
5 Mr. Lynch Colin London
7 Ms. Lynch Helen Boston
3 Prof. McColgan Harry Seattle
9 Mrs. Robb Mary Dundee
1 Mr. Thompson Brian Boston
2 Miss Wellington Helen Dundee
4 Dr. Wellington Sandra Boston

CUSTOMERS

34 • Indexing

330

Non-clustered indexes
Non-clustered indexes give you essentially the same benefits as clustered
ones – they speed up access to the data. They are a little slower than clustered
indexes (though not much) but their big advantage is that you can have as
many of them as you like on a single table.
Sounds almost too good to be true, but it isn’t. They really work and how
they work is most easily described using an example. Let’s suppose that Cus-
tomerNo is the primary key of the table below.

Imagine for a moment that we re-sorted this table by the values in the Last-
Name column. We would get this table:

CustomerNo Title LastName FirstName Town
1 Mr. Thompson Brian Boston
2 Miss Wellington Helen Dundee
3 Prof. McColgan Harry Seattle
4 Dr. Wellington Sandra Boston
5 Mr. Lynch Colin London
6 Ms. Cooper Norah Seattle
7 Ms. Lynch Helen Boston
8 Mrs. Falconer Grace London
9 Mrs. Robb Mary Dundee

CUSTOMERS

CustomerNo Title LastName FirstName Town
6 Ms. Cooper Norah Seattle
8 Mrs. Falconer Grace London
5 Mr. Lynch Colin London
7 Ms. Lynch Helen Boston
3 Prof. McColgan Harry Seattle
9 Mrs. Robb Mary Dundee
1 Mr. Thompson Brian Boston
2 Miss Wellington Helen Dundee
4 Dr. Wellington Sandra Boston

CUSTOMERS

34 • Indexing

331

Now suppose that we delete all of the columns except the primary key:

We end up with a list of items, one for each row in the table. What is unusual
about this list is that it is a set of primary key values which are not is ascend-
ing order. Their order is determined by the alphabetical order in another col-
umn, LastName.
Now suppose that we start to use this sorted list together with the original
table:

Suppose I want to find the first person in the list alphabetically by last name. I
don’t even look at the CUSTOMERS table. I look at the sorted list of primary
key values and pull out the first one I find – 6. Then I go to the CUSTOMERS
table, find primary key value 6 and I have now found the first person in the
list alphabetically by last name – Cooper. Easy.

CustomerNo
6
8
7
5
3
9
1
4
2

CustomerNo Title LastName FirstName Town
1 Mr. Thompson Brian Boston
2 Miss Wellington Helen Dundee
3 Prof. McColgan Harry Seattle
4 Dr. Wellington Sandra Boston
5 Mr. Lynch Colin London
6 Ms. Cooper Norah Seattle
7 Ms. Lynch Helen Boston
8 Mrs. Falconer Grace London
9 Mrs. Robb Mary Dundee

CUSTOMERS

34 • Indexing

332

A non-clustered index is essentially a list of the primary key values which
have been sorted as a result of information in another column. In the above
example, the order was determined by the values in LastName.
This one:

has been sorted by FirstName.
So, if I have the original table and these two sorted lists, I now have two non-
clustered indexes that can both be used to find data in particular columns
very rapidly.
Of course, non-clustered indexes can be used for more than finding the top of
a list. I can easily perform a binary chop on the non-clustered index. Suppose
I want to find FirstName = ‘Mary’. I jump to the middle of the second non-
clustered index and read the value – 7. I move to the CUSTOMERS table and
look up that primary key value. The FirstName value is ‘Helen’ so I know that
‘Mary’ is somewhere below the mid-point of the non-clustered index. So I
have just eliminated half the number of items that I need to examine, and I
know that the primary key value of Mary’s record is somewhere in the re-
mainder.

And I can continue to chop this list down until I find Mary’s record. Note that
the binary chop is applied to the index and not the table. This explains why,
when we were talking about disks and performance, we suggested that you

CustomerNo
1
5
8
3
7
2
9
6
4

CustomerNo
2
9
6
4

34 • Indexing

333

put the data and the indexes on different disks to minimize the head move-
ment.
Once again we are painfully aware that non-clustered indexes can become
more complex than this. To give just an idea of how the idea of a sorted list
might be modified for speed, imagine that you had a yes/no column in a 20
million row table and that by far the majority of the values are “Yes”. In fact,
there were only three rows that contain the value “No”. Keeping a non-
clustered index of 20 million values would work and it would give much
faster access to the data. However, the index itself would be very large and a
little thought shows that we can store the information much more efficiently.
For example, this tells you all you need to know:

Another example: we said that a non-clustered index was a set of primary
key values sorted by the values in another column (say, LastName). If we also
store the values from the LastName column in the index, then a query that just
requests LastName will run much faster because only the index has to be que-
ried. Of course, this makes the index larger and slower to maintain but the
speed gain can be dramatic.

Applying indexes – which fields/columns should be indexed?
All RDBMS allow you to mark one or more columns as indexed. This is usu-
ally done during table design and once you have decided which columns to
index, the RDBMS should construct and maintain the indexes transparently.
To give a feel for the speed difference that indexes can make, I ran some que-
ries on tables both with and without appropriate indexes. One particular
query on non-indexed tables was aborted after 18 hours owing to boredom
on my part. The same query (with the same RDBMS) was completed in under
a minute with indexes.
If indexes are such a good idea (and they are), why not simply index every
column in every table in every database? Well, despite their efficiency, in-
dexes do take some processing power to maintain. This maintenance occurs

Primary Key Value Value
2,342,345 No
8,231,237 No
11,453,454 No
All the rest Yes

34 • Indexing

334

whenever rows are updated or added to the table. Every time a new row is
added, or an indexed value in an existing row is edited, some or all of the in-
dexes have to be modified as well. Given a huge table and multiple indexes
this can produce a significant delay before the RDBMS will allow the next
row to be edited or added.
This means that indexes shouldn’t be used indiscriminately but there is noth-
ing to stop you from using them intelligently, as long as you are aware of
their pros and cons.
Pros: They speed up querying. This makes a dramatic difference with large
tables.
Cons: They slow down data entry and editing. This won’t be noticeable with
small tables but can be a problem with large ones.

Primary keys
The most obvious columns to index in a table are those that make up the pri-
mary key but the RDBMS will typically do that for you. It will usually apply
a clustered index.

Heavily used columns
Other obvious columns to index are those that users frequently name in the
WHERE part of their queries. For example, the query:

SELECT Item, Amount, SaleNo
FROM SALES
WHERE Item = ‘Sofa’

would almost certainly run faster if the Item column was indexed.

Table size is important
Note the slightly cagey nature of that last statement; ‘would almost certainly
run faster’. There are times when indexes make no difference at all to the
speed of a query. For example, suppose a table is tiny – perhaps four rows.
You can, if you like, put one or more indexes on this table. However, it would
be faster for the database to read the entire table into memory and manipu-
late it there than it would be for it to use the index. The query optimizer (see
below) should be able to work this out for you but a general rule goes some-
thing like this. If the table is tiny, don’t index it (apart from the primary key
which is done automatically for you anyway). If the table is huge then you
will see massive gains from indexing and it is worth spending a fair time get-

34 • Indexing

335

ting the indexing strategy correct. If the table is mid-sized and you are in
doubt, then I would err on the side of indexing it. The query optimizer
should be able to decide whether or not to use the indexes (there’s more
about query optimizers in the next chapter).
What is small, medium and large in this context? Here we really can’t help
you because it depends on the relative size of the table, the server, the mem-
ory and so on. On a PC a 10,000 row table can be large, on a mainframe that
same table could be tiny.

Foreign keys
Consider these two tables.

ORDERS.OrderNo is a primary key and ORDERS.CustomerNo is a foreign key to
CUSTOMERS.CustomerNo which is a primary key.
Clearly, many of the queries we would expect to run against these two tables
will involve finding the orders that correspond to particular customers. Every
such query means that the RDBMS has to perform a search on
ORDERS.CustomerNo, that is, on the foreign key. In that case, putting an index
on the foreign key is likely to be a good idea.

CustomerNo FirstName LastName
1 Brian Thompson
2 Sally Henderson
3 Harry McColgan
4 Sandra Wellington

CUSTOMERS

OrderNo CustomerNo Supplier Price Item
1 2 Harrison £235.00 Desk
2 1 Ford £234.00 Chair
3 3 Harrison £415.00 Table
4 4 Ford £350.00 Lamp
5 2 Ford £234.00 Chair
6 4 Ford £350.00 Lamp
7 2 Harrison £235.00 Desk

ORDERS

34 • Indexing

336

However, there are some instances where indexing a foreign key will not im-
prove performance at all. For example, suppose the users of the database
never run that kind of query in practice. Instead they always run queries that,
for example, find all the orders for items from the Supplier ‘Ford’ and list the
customers who place them. In that case an index on the foreign key
ORDERS.CustomerNo will have no effect at all because that column is never
searched.
So, indexing foreign key columns is not always an advantage, which is pre-
sumably why databases don’t automatically index them in the same way as
primary keys. It is very often the case, however, that indexing foreign keys
has a profound effect on performance and so we thoroughly recommend that
you look carefully at the foreign keys as candidates for indexing.
If you want a more specific guideline then think about it this way. Foreign
keys are typically found at the many end of a one-to-many join. In this case,
one customer can place many orders and, sure enough, the foreign key under
consideration is at the orders end of the join.
If the query restricts on the data in the table at the one end (CUSTOMERS) and
then pulls all the associated rows from the many end (ORDERS) then indexing
the foreign key should make a significant difference.

SELECT CUSTOMERS.FirstName, ORDERS.Item
FROM CUSTOMERS INNER JOIN ORDERS
ON CUSTOMERS.CustomerNo = ORDERS.CustomerNo
WHERE CUSTOMERS.FirstName="Sally";

On the other hand, if a query restricts the data in the table at the many end
(ORDERS) and then pulls all associated rows from the one end (CUSTOMERS)
then indexing the foreign key will make no difference. For example:

SELECT CUSTOMERS.FirstName, ORDERS.Supplier
FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CustomerNo =
ORDERS.CustomerNo
WHERE ORDERS.Supplier="Ford";

However, if you are unsure of the type of queries that your users will be run-
ning, then put foreign keys high on your list of probable columns to index.

34 • Indexing

337

Intelligent use of indexes
Suppose that you look after a massive database of orders. It just so happens
that this table is updated with all the previous month’s orders on the first day
of every month. For the whole of the rest of the month, the table is frequently
queried but never updated. What would you do? Well, I’d index all of the for-
eign keys and any of the columns which were ever queried, without worry-
ing about how many indexes I was applying.
For the whole of the month, all users of the database would be able to query
it and get answers back as rapidly as possible. On the morning of the first day
of the month, I would remove all of the indexes. As the new orders were
added, the users wouldn’t see any speed penalty because the RDBMS would-
n’t be constantly rebuilding the indexes after every edit.
You will be way ahead of me by this point. Once all of the new orders were
added, I would reapply the indexes, the RDBMS would build them all once
and for the rest of the month the queries would run like greased lightning.

35 • More on optimization

338

Chapter 35

More on optimization

Query optimization
SQL is the language used to query a database and, in some respects, it’s a
strange language. It’s declarative rather than procedural, which means that
when you write a query you declare to the database engine what you want it
to do, but you don’t tell it how to achieve that end result (that would be a pro-
cedural approach). For instance, if you want to query for matching values in
two joined tables, the query contains nothing to indicate which table should
be examined first.
For example, consider this query:

SELECT CUSTOMERS.FirstName, ORDERS.Supplier
FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CustomerNo =
ORDERS.CustomerNo
WHERE CUSTOMERS.FirstName="Sally" AND ORDERS.Supplier="Ford";

It says, give me the customer’s first name and the supplier’s name for all or-
ders where the customer was Sally and the supplier was Ford.
Nowhere in this SQL is the database engine told which table to look at first.
Suppose that both tables were huge and there was an index on CUSTOM-
ERS.FirstName but not on ORDERS.Supplier. In that case, as an intelligent human,
we’d search the indexed column first because, if we can’t find any matches to
‘Sally’ in that column we know that the answer table is going to contain zero
rows so we never even have to look at the unindexed column in ORDERS.
Or suppose that CUSTOMERS.FirstName is still indexed, but ORDERS has only
three rows. In that case we’d take a quick look at ORDERS and, if there were no
Suppliers called Ford we’d have finished the query.

35 • More on optimization

339

The point here is that SQL doesn’t contain any information about how the
query should be performed, it simply asks for a specific set of data. Hence we
call it a declarative language.
So who or what does make those very important decisions? Well, it’s a very
subtle and elegant part of the database engine called the query optimizer. In
both of our examples above the optimizer should be easily capable of working
out the optimal way of solving the problem.
How does a query optimizer work? When you run a query, it’s sent to the en-
gine as a SQL string; that code is broken down into a set of so-called primitive
operations which are then carried out against the database by the database en-
gine. It is the optimizer that breaks the query into primitives, making all sorts
of decisions which will speed up the query. The end result is called an execu-
tion plan which is essentially a strategy for solving the problem.
Clearly there is a tension here: the optimizer has to find the optimal execution
plan but, very like a game of chess, there are numerous possible solutions to a
complex query (quite literally there can be billions). Imagine that the slowest
possible solution takes 20 seconds to complete while the fastest possible (if we
can find it) would take ten seconds. Now suppose that the optimizer does fi-
nally work out the fastest possible solution, but it takes eight minutes to find it.
Well, there’s the tension right there. Like a good chess player, the trick is to
find the optimal solution – the best one you can find in a reasonable period of
time. The fastest solution is no help if it takes too long to find. Query optimiza-
tion software is indeed subtle.
Query optimizers are very, very clever but they can end up working in the
dark if we fail to give them the help they need. This brings us to our next topic,
updating statistics.

Update statistics
In Chapter 27 we described how information about a database is stored as
metadata in system tables. In general, this information describes the structure
of a database (table names, column names, which columns have been indexed
and so on) but typically there is no metadata in there that describes the data
itself. For example, there is no record of the number of rows in each table nor
of how data is distributed within a table.
Data is rarely distributed evenly. For instance, in British English last names, certain
initial letters are much more common than others. In my (very) local phone book there
are three pages of last names beginning with A, twelve and a half pages of Bs and a

35 • More on optimization

340

mere eighth of a page of Qs. The proportions are likely to differ in different languages
and in different parts of the same country: Scotland has a preponderance of names
beginning with Mc and Mac, so there’s a large chunk of M pages in Scottish directo-
ries.
We described a binary chop earlier in the chapter and it is a wonderfully ef-
fective technique. But if I asked you to find the phone number of John Aber-
crombie, you wouldn’t open the phone book halfway through but near the
beginning. In the same way, if the query optimizer has information about the
distribution of the data in a column it can use the indexes even more effec-
tively.
All of this information about the data in a database is known as the database
statistics. Unlike system tables which are typically maintained automatically
by the database engine, the generation of up-to-date statistics is typically left
under the DBA’s control. And unless the DBA does actively take control, in-
formation about the data in tables is not available to the database engine. In
turn that means that the query optimizer will not know which tables are large
or small and will be unable to create a good, well optimized execution plan.
Even as I write these words, this is changing and the more advanced engines
are now beginning to take over some of the control of updating statistics.
However, it is still an area where human intervention will be important for
the next few years.
Most database engines allow you to instigate an ‘update statistics’ operation
which will count rows and inspect the distribution of indexed data amongst
other things, and store them for use by the query optimizer.
This section boils down into a simple speed tip: run an ‘update statistics’ op-
eration on your database at regular intervals. Your query optimizer will re-
ward you with even faster queries.

Query analysis
Many database engines give you a tool called a query analyzer. As you might
guess from the name, it lets you take a closer look at your queries and how
they are being solved. A query analyzer can be a useful investigative tool
when, say, a user has alerted you to the fact that a query is running very
slowly.
Once you’ve run a query, you can ask the analyzer to show you the execution
plan that the query optimizer has chosen for solving it. Being able to see how

35 • More on optimization

341

the query is broken down into primitive operations gives you the opportu-
nity to spot something you could tweak to improve performance, like adding
an index.
Query optimizers and analyzers make a great team: the optimizer does the
donkey work but you can review its decisions using the analyzer and get the
chance to bring your own understanding into play.

Access has a highly efficient query optimizer but it has no query analyzer.
However, it’s worth knowing what tools are likely to be available to you if
you decide to trade up in terms of RDBMS. The screen shot above also gives
you some idea of what such a tool might look like.
Also, in Access you can’t manually update statistics. As an alternative, you
have the option to compact a database and it’s good practice to do this from
time to time. It has much the same effect as updating statistics and can speed
up querying. This option is found on the Tools menu (Tools, Database Utilities,
Compact and Repair Database…)

35 • More on optimization

342

Writing good SQL code
I wrote above that SQL is a declarative language rather than a procedural
one. Using SQL you tell the database engine in broad terms what you want it
to do without telling it how.
SQL is a versatile language and it’s perfectly possible to express the same re-
quest for data in a variety of different ways, using different commands and
constructions. A perfect query optimizer would take a query written in any
way in SQL, render it into a perfect execution plan and execute it, always per-
forming at top speed. In practice, it turns out to be very, very difficult to build
a perfect query optimizer.
The upshot of this is that despite what we said earlier, certain aspects of the
way we write our SQL code can still have a dramatic effect on the speed with
which the code runs. Unfortunately the optimal way to write SQL depends
on the query optimizer for which it’s being written: optimizers differ signifi-
cantly between database engines and can differ significantly between ver-
sions of the same database engine.
The message here is that if it comes to your attention that a query or view is
not performing well, then inspecting the SQL and re-writing it can increase
speed.
This all sounds a little vague, so an example may help. You have a table called
Workforce with an indexed column called Profession. The table contains 10 mil-
lion rows but only four different professions are represented in the Profession
column. These are manager, lumberjack, politician and DBA. Furthermore,
there are only three rows out of 10 million with ‘DBA’ in the Profession col-
umn. In order to find the three DBA records, you write some SQL. You could
write:

SELECT Profession
FROM WORKFORCE
WHERE Profession = "DBA";

or alternatively you could write:
SELECT Profession
FROM WORKFORCE
WHERE Profession NOT IN ("Manager", "Lumberjack", "Politician");

These queries will give exactly the same result but the crucial point here is
that we only know they’re logically identical because we have some specific
knowledge about the data and its distribution. We happen to know there are

35 • More on optimization

343

only four different values in 10 million rows. For a human being, it’s a simple
intuitive leap that these two are equivalent but for a query optimizer that’s a
very difficult conclusion.
It may know from the database statistics that there are only four different val-
ues in this column – manager, lumberjack, politician and DBA. It may be able
to see in the query that we have listed three of those – ("Manager",
"Lumberjack", "Politician"). But to put those two pieces of information to-
gether and to realize that, for this particular set of data:

WHERE Profession = "DBA";
is the same as:

WHERE Profession NOT IN ("Manager", "Lumberjack", "Politician");
is a very advanced conceptual leap. We have to remember that query opti-
mizers are not intelligent, they are only programs. Not only that, they have to
run within very tight time constraints. The average query optimizer would
find this particular equivalence difficult to resolve.
What will happen in practice? Given the first statement, most query optimiz-
ers will use the index to identify the three rows with DBA records and return
them in an answer table with a sub-second response time. Given the second
statement, most optimizers will have to perform a complete table scan and
compare every value found in the Profession column with the list supplied in
the SQL. Almost all of the rows are of no interest once inspected but much
time will be consumed checking and then ignoring them. Eventually all rows
have been inspected and the same three-row answer table will ultimately be
presented.
This particular class of difference can be expressed straightforwardly. When
we write the WHERE clause like this:

WHERE Profession = “DBA”
we are providing the query optimizer with what’s called a searchable argu-
ment. We’re telling it what to look for. When we write:

WHERE Profession NOT IN ("Manager", "Lumberjack", "Politician");
we’re providing what is known as a non-searchable argument. We’re asking
for exceptions: things that aren’t in the list we provide.
The bottom line is that you can design and build the best database in the
world and its performance can still be impacted by how DBAs write views
and how application developers write queries. Learning about the SQL lan-
guage will stand you in good stead: our primer in Chapter 29 will get you
started.

36 • Denormalization

344

Chapter 36

Denormalization

Denormalization is the process of turning a normalized database into one
where some or all of the tables are not in 3NF. Denormalization is not only
perfectly acceptable, there are times when to build a fully normalized data-
base would be absolutely the wrong decision.
Yes, I know. I know that I spent the whole of Chapters 25 and 26 strongly em-
phasizing the benefits of a normalized structure. Yes, I know that I made it
clear that not using a fully normalized database would render you a social
pariah at the Database Designers’ Ball. I know all of that. But there is the little
matter of speed.
When we create a fully normalized database we take all of the data and split
it up into small, discrete packages called tables. We do this so that each piece
of data is stored only once. This makes it much easier for us to maintain the
integrity of the data, it keeps the data volume low and it ensures that what-
ever questions we ask of the data we will get the correct answer. These are all
the benefits of a fully normalized database and they are all real and all very
important.
The problem is that any and all design decisions have their pros and their
cons. One of the disadvantages of a fully normalized database is that it can be
slow when we run queries against it. Why? Well, precisely because we have
taken all of the data and split it up into small, discrete packages called tables.
We use pointers between the tables (the primary and foreign keys) so we can
always put the data back together, but tracking all of those pointers takes
time. The net result is that fully normalized databases can be slow. For that
reason it has been relatively common to denormalize parts of the database for
performance gains.
But, inevitably, denormalization brings its own problems. As soon as you de-
normalize a relational structure you re-introduce some modification anoma-
lies. All of these can be kept in check and controlled using some form of data

36 • Denormalization

345

integrity code (often one or more triggers) but those in turn will slow down
data entry and update.
Managing denormalized tables is not an insurmountable problem and it’s per-
fectly possible to build a robust system that has been partially denormalized. It
will, however, take time and money to hand-code the integrity constraints nec-
essary to keep data in good shape, and further time and money to maintain
and document them, and to train new DBAs in their use. It is, as ever, a balanc-
ing act between performance and costs.
As we said at the beginning of this section, as hardware costs plummet and
database maintenance cost rise, the balance is shifting and fewer people are
denormalizing systems now than they were 10 years ago. It’s now cheaper to
throw hardware at the problem.
Having added all of those warnings, it is true that I would expect all well-
qualified database designers to have a good understanding of the pros and
cons of denormalization because it is still a perfectly valid technique in the
right hands.
Yes, this is a coded way of saying that denormalization is often abused by the wrong
hands.
So let’s have a look at the types of denormalization that you might want to con-
sider.

Mirroring tables
In this context, mirroring simply means making a copy of a table. It’s a slightly
curious term because it’s not, of course, actually a mirror image but a straight-
forward copy. So under what circumstances would you want to make even a
straightforward copy of a table?
Imagine that you have a huge table that is heavily used by multiple users. The
usage is so heavy that the response times are slow all the time, when adding
and updating rows, and when querying. The table has becomes a bottleneck to
the performance of the entire database. One obvious solution is to create a
copy of the table and the direct half of the queries to run against the original
table and the other half to run against the copy. Simple. Simple and effective.
A couple of things should, however, be borne in mind here. One is that bottle-
necks like this are typically physical – by which I mean that when many peo-
ple hit one table the speed decrease occurs because of the physical limitations
of the disk on which the table is sitting. If you make a copy of the table and

36 • Denormalization

346

place it on the same disk you are unlikely to see any major speed increase. In
fact, you are likely to see speed degradation because the disk now has to read
from two separate tables.
Secondly, as soon as you mirror a table in this way (whether on one disk or
two) you introduce a complete set of modification anomalies. If you delete a
row in one table, you have to delete it in the other: if you don’t, you are left
with an inconsistency between the two copies of the table. So you have to add
a substantial set of hand-crafted data integrity constraints to the database
(typically implemented as triggers – see Chapter 22) which maintain the in-
tegrity. These will, inevitably, slow down the process of updating the data.
Mirroring tables is likely to work best on tables that are read heavily and
much less frequently updated because reading is a quicker operation than
writing and doesn’t change the data.
This is our first example of denormalization but it sets the tone for every
other example we examine and underlines the fundamental point we made
above. Denormalization is only ever implemented to improve performance,
but it almost always introduces data integrity issues.

Splitting tables
Another form of denormalization (more accurately a form of over-
normalization) is the splitting of large tables into two or more smaller tables.
The number of tables into which a large table is split, and whether the split-
ting is performed vertically or horizontally, depends on the particular circum-
stances in your database.
Imagine a table with a hundred columns and many rows: it’s half a terabyte
of solid data. Investigation reveals that 99% of the queries run against this
table require data from just the first five columns. You’d split this table verti-
cally, putting the five frequently-queried columns into a separate table, which
now occupies a mere 0.01 of a Tbyte and can be queried very much more rap-
idly. The remaining 95 columns inhabit a table of their own. The 5% of que-
ries that need to access the whole table can do so via a view which pulls the
data together so it has the look and feel of a single table. Where a table has
been split vertically, both new tables can be stored on the same disk: most of
the head activity will be over the small table with rare sorties over the larger
one.
If, on the other hand, you imagine a table of customers, roughly half of whom
are based in Canada and half in Europe. Your Canadian users almost exclu-

36 • Denormalization

347

sively query for Canadian customers and European users for European cus-
tomers. This is a case where you’d consider splitting the table horizontally,
sorting the rows into Canada-based and Europe-based customers and putting
each category into a separate table. This gives you two tables, both enjoy a
reduction in querying load and both are smaller so queries run faster against
them. Again, a view can be used to see the complete set of data whenever
necessary. Whether these tables were stored on the same or different disks
depends on circumstances: if you found that most hits on the Canadian table
occurred when your European users were asleep, you could store the two
tables on the same disk. If both tables were being heavily hit over the same
period, you’d move them to separate disks.
Splitting tables is a common technique for improving query performance
where the data is invariably queried by time and/or date. For example, you
have a huge table of orders placed with your company. Mostly users want to
see current orders, or those in the last week or month or year, and splitting
the table into several smaller tables based on time (ORDERS2004, ORDERS2005,
ORDERS2006 etc.) can bring impressive performance gains.
Once again there are data integrity issues here. Returning to the Canadians
and Europeans example, customers, wherever they’re based geographically,
are all objects of the customer class and you may still want to inspect and
query them as a single class of object. In order for a view to pull the data from
two tables together so that it can be queried as if it was a single table, the pri-
mary key values must be consistent. If you allow new customer records to be
entered to the two separate tables, you must ensure that the same primary
key is not allocated twice to two different customers in the two different ta-
bles.

CustomerNo Country LastName
1 UK Smith
2 Germany Schneider
4 UK Anderson

EUROPECUSTOMERS

CustomerNo Country LastName
3 Canada McKeith
5 Canada LeBlanc

CANADACUSTOMERS

36 • Denormalization

348

If you add a new French customer (Monsieur Soulard) to EUROPECUSTOMERS
and issue him with a customer number of 6 you must ensure that Mr. Brown
in Canada is not issued with the same primary key value. It fits the familiar
pattern: denormalization offers speed but with additional burdens.
OK, we’ll stop going on about this; you’ve got the message.

Redundant data
Redundant data is ruthlessly pursued and expunged during the process of
normalization but in the search for speed it can be an excellent tool.
Here are two perfectly unsurprising tables containing order and company
data, none of it redundant:

Imagine, however, that the COMPANY table has many more columns to the
right and that both tables have a vast number of rows. Further imagine that
the ORDER table is constantly queried and almost every query requests order
details which include the company name. This means each query has to
match the value in ORDER.CompanyID with the value in COMPANY.CompanyID
and pull the entry in COMPANY.CompanyName into the answer table. Even
with indexing, this is slow; too slow.

CompanyID CompanyName
1 ABC Inc
2 Smithsons
3 K & J Ltd
4 LeFranc
5 Penduline

COMPANY

OrderID CompanyID Item Quantity
1 2 300 1
2 2 400 2
3 4 750 1
4 3 350 1
5 1 800 6

ORDER

36 • Denormalization

349

One solution is to create a column of redundant data in the ORDER table,
which simply states the company name in full, as it’s wanted by the users,
like this:

Now each query will run much faster because it can avoid the whole process
of using keys to find matching data in a separate table.
There’s still an overhead to be considered, however. Every time a new order is
entered, the company name must be fetched from the COMPANY table and
written into the ORDER table, and if a company record is ever changed, all the
instances in ORDER.CompanyName must be updated.

Repeating groups (breaking 1NF)
Can we really mean it? Break first normal form? Well, if you’ve decided that
denormalisation is for you, why not start with the big one? It’s not sacrosanct,
after all. Let’s look at a situation where breaking 1NF could help. 1NF says,
simply put, that you must not have repeating groups of data within a table.
You have a table of parts containing information about their progress through
your factory. Each part has a code and is checked twice by an inspector. You
employ a phalanx of inspectors, and it’s not necessarily the same inspector
who makes both checks. The inspectors have a table of their own, and there’s
also a table of check events. The tables, in shiny 3NF, look like this:

OrderID CompanyID CompanyName Item Quantity
1 2 Smithsons 300 1
2 2 Smithsons 400 2
3 4 LeFranc 750 1
4 3 K & J Ltd 350 1
5 1 ABC Inc 800 6

ORDER

PartID Type Material
B3 Milled Steel
C47 Cast Iron
D129 Cast Bronze

PARTS

36 • Denormalization

350

It transpires that the database is heavily queried and most queries want to
know the name of the inspector who performed a check on a particular part.
This means every query must match the value in PARTS.PartID with equivalent
values in CHECKS.PartID and then match values in CHECKS.InspectorID to those
in INSPECTORS.InspectorID before reaching the requested information. This
means following a trail between three tables, a slow process, and inevitably
the result is poor performance.
If we know that there are only ever two checks made on a part, and that all
parts always have to have both checks, we could re-design the PARTS table to
look like this:

The INSPECTORS table remains unchanged and the CHECKS table becomes re-
dundant.
Data integrity issues? Not too great in this instance because it so happens that
all parts have exactly two inspections.

InspectorID FirstName
1 Joe
2 Sam
3 Bill

INSPECTORS

CheckID PartID InspectorID
1 D129 2
2 C47 1
3 D129 3
4 C47 1
5 B3 2

CHECKS

PartID Type Material InspectorIDCheck1 InspectorIDCheck2
D129 Cast Bronze 2 3
C47 Cast Iron 1 1
B3 Milled Steel 2

PARTS2

36 • Denormalization

351

Derived columns
Derived data is another of those conveniences that we learn to live without in
a normalized database. When we want to use derivable data, we derive it us-
ing techniques like calculations and concatenations. If we store the cost of an
item and we have an order for two of them, it’s a simple calculation to multi-
ply the cost by the quantity to give us the total monetary value of the order.
Calculations are slow to perform, relatively speaking, and where queries con-
stantly ask for information that has to be calculated, poor performance can
result. So, yes, derivable data is up for grabs when you’re denormalizing.
Let’s look at a couple of tables containing orders and items to illustrate this
point.

If every query that runs against the ORDERS table wants the total value for an
order, it has to match the value in ORDERS.ItemID to ITEMS.ItemID, find the cor-
responding price in ITEMS.Price and multiply it by the number in OR-
DERS.Quantity. Too slow.
This is a situation where deriving some data and storing it can improve query
speed. You calculate the value for each order and store it in the ORDERS table,
like this:

OrderID ItemID Quantity
1 1 1
2 2 8
3 4 1
4 1 2

ORDERS

ItemID Item Price
1 Lobster $12.00
2 Langoustine $1.50
3 King crab $10.00
4 Spider crab $8.00

ITEMS

36 • Denormalization

352

Now queries just have one table to inspect and no calculations to perform.

Summary
This part of the book, although quite chunky, simply gives you an overview
of the various techniques at your disposal. However, acquiring just the over-
view is vital to later optimization success. For instance, a DBA might absorb
the ideas of denormalization and mirroring and implement them, but the
same DBA may never have seen, read or discussed the point that mirrored
tables should be stored on separate disks. (I’ve seen just this scenario in the
wild). If you mirror a table to the same disk, the head spends much time
jumping between the two copies and performance gains won’t be apparent.
Implementing optimization techniques in isolation doesn’t always lead to a
good solution. To develop a successful optimization strategy, a solid over-
view is an excellent place to start.

OrderID ItemID Quantity Price
1 1 1 $12.00
2 2 8 $12.00
3 4 1 $8.00
4 1 2 $24.00

ORDERS

Appendix 1 • GUIs, macros and control languages

353

Appendix 1

GUIs, macros and control
languages

Building a user interface and controlling data entry at the form level are typi-
cally accomplished in one of three ways:

using the GUI
using a macro language
using a programming language

We’ll have a look at all three and examine their pros and cons.
Typically, GUIs are seen as the easiest to use and the least powerful, while pro-
gramming languages are perceived as the most powerful but the most difficult
to learn. Macros sit, like elevator music, slap in the middle of the road (and
therefore, in my opinion, deserve most richly to be run over, but more of that
later). However, there is often a measure of overlap between these three, so
we’ll choose a task that can be accomplished by all three to illustrate how they
work and how they differ.
It says clearly at the start of this book that it is not about ‘How to use Access’ but the
next few pages are going to read pretty much like a bit out of a ‘How to’ book. This is
not because we have forgotten the original idea, it is because we want to discuss which
of these three ways of building a user interface is the ‘best’. In order to compare and
contrast them, we have to give some idea of how they are used.

Creating a very simple user interface
Suppose you have a database like the one we created in preceding chapters.
Customer details are stored in a table called CUSTOMERS and order details in an

Appendix 1 • GUIs, macros and control languages

354

ORDERS table. You have also created two forms, as in Chapter 15, one showing
the customer details and the other, based on a query, which shows the order
information for specific orders from particular customers. So far, so good.
But now you want to weld these two forms together to create a tiny part of a
cohesive user interface. You want to be able to move directly from the
Customers form to the Orders form. This will enable you (or the other users of
your database) to enter the details of a new customer and then move directly
to the Orders form to enter that customer’s first order.
What is required is a button embedded in the Customers form which will
open up the Orders form. In addition, we want the Orders form, when opened
up in this way, to show us only the orders which relate to the current cus-
tomer we are looking at with the Customers form. In other words, if we are
looking at Sally Henderson’s record in the Customers form, when we press the
button we want to see only her orders in the Orders form.

Using the GUI
In Access 1.x the GUI could not provide a solution to this problem. Access
versions 2.x and later, on the other hand, allow you to do this using a Control
Wizard.
Switch to design mode in the Customers form, pop down the ‘View’ menu
and choose Toolbox. This will cause a modeless (meaning it stays visible on
screen until you close it) window to appear – the Toolbox. It has a tool called
Control Wizards (the second button at the top of the toolbox in Access 2003).
Turn it on and then use the Command Button tool to place a button on the
form. The wizard will come into operation and ask you a series of questions.

Appendix 1 • GUIs, macros and control languages

355

You need to select Form Operations, Open Form, ORDERS, “Open the form and
find specific data to display”, then match the relevant fields, type in some text
for the button (perhaps ‘Open Orders’, although I have used ‘GUI Button’)
and finally give it a name (which could also be ‘Open Orders’).
This works beautifully. When you press the button, the Orders form opens up.
When you close the Orders form the Customers form should still be visible,
since it was never closed.

Using a macro
Go back to the database window, click on the Macro tab and then on the New
button. A window opens up which is divided into two sections, Action and

Appendix 1 • GUIs, macros and control languages

356

Comment. If you click in the first row of the action column, a list pops down.
Scrolling down this list is fascinating because it shows all the actions that a
macro can perform. We want this macro to open the ORDERS form, so choose
the option OpenForm; in fact typing ‘o’ will save some scrolling time because
it jumps to the options that start with that letter. A second dialog area appears
at the bottom of the macro window (under ‘Action Arguments’) and it is here
that you can enter details such as the name of the form you want to open. Op-
posite Form Name you can again click to produce a pop-down list from which
you can select the form ‘Orders’.
One option listed under Action Arguments for Open Form is ‘Where Condition’.
This essentially means ‘Open the form where the following is true’. In this
case we want to see only those orders in which the Customer ID field has the
same value as that currently showing in the CustomerNo field in the form
called Customers. To put that another way, we use the Customers form to flip
through the customer records until we find the customer we want. At that
point, the relevant name will be showing in the form, as will the CustomerNo
number (say, 2). When we switch to looking at the orders, we want to see
only those which have a Customer ID number of 2.
Thus we want to see the records in the Orders form where:

the CustomerNo field is equal to the CustomerNo field in the form
called Customers.

We can express this more formally as:
Open the form Orders where
[CustomerNo]=[Forms]![Customers]![CustomerNo]

The expression:
[CustomerNo]=[Forms]![Customers]![CustomerNo]

is the statement required in the Where Condition section. In Access 2003 you
can use the expression builder to help you to construct this.

Appendix 1 • GUIs, macros and control languages

357

Close the macro window and give the macro a sensible name like ‘Open Or-
ders’.
That’s the macro written; all you need to do now is add a button to the form
and tell it which macro it should run. Open the form in design mode, pop
down the ‘View’ menu and choose Properties. Another modeless window ap-
pears – the Properties Sheet. Turn off the Control Wizards, then choose the
Command Button tool from the toolbox, click the mouse on the form and a
button will appear. Now turn your attention to the Properties Sheet. Find the
property called ‘On Click’ (it is in the list of All Properties and also in the list
of Event Properties). Click in the On Click box and you will be able to select
your macro from a list (if this is your first macro, you will, of course, get a list
of one):

Appendix 1 • GUIs, macros and control languages

358

That’s it; when you press the button, the macro should operate in the same
way as the GUI-generated one. You can give the button a name like ‘Macro
Button’.

Using the programming language
Modern Windows RDBMSs still allow you write very efficient bits of code
but you no longer write them in one huge block. Instead it is normal to use
the GUI to create most of the major objects you need (forms, reports etc.) and
indeed to populate them with control objects (buttons, combo boxes etc.). The
programming language is then used to give these objects a mission in life. For
example, you can use the GUI interface to place a button on a form and then
to attach a small section of code to it so that it does something when it is
clicked by the user. More technically, you supply code which is linked to an
event associated with that object.
Every object in the interface has a series of events which are linked to it. For
example, a form is an object and has events like ‘On Open’ tied to it. The
events are specified by the designers of Access and reflect the likely uses to
which objects will be put. Form objects, for example, do not have events like
‘On change color’ since, although the color of a form can be changed, you are

Appendix 1 • GUIs, macros and control languages

359

unlikely to want to have a section of code which detects that particularly ob-
scure event and runs when it occurs. On the other hand, forms are continu-
ally being opened so we have an event called ‘On Open’ which will run code
every time the form is opened. And buttons have events like ‘On Click’ which
are clearly likely to be useful. In fact, to no one’s great surprise, that’s the
event we are going to use for code in this case.
Open the Customers form in design mode and use the toolbox to place a but-
ton upon it. Then use the property sheet to rename the button as ‘Press me
for Orders’ and give it the same caption. Next list the ‘Event Properties’ and
locate the one called ‘On Click’. If you click to the right of that event you will
find a button with three dots appears. Press it and a dialog box appears
which asks whether you want the Expression Builder, Macro Builder or Code
Builder: select the third option.
A code window opens up in which you will be able to type the required code.
The code you are going to use is based on the statement:

DoCmd.OpenForm
The DoCmd bit is a commonly used statement in Visual Basic which allows
you to execute most of the Access ‘Actions’. It’s short for ‘do command’. Ac-
tions (like the ‘actions’ described earlier for macros) carry out tasks like open-
ing forms, closing them, opening tables etc. If you search the help system for
‘actions reference’ you can find a list of them all.
Opening the form is no problem; we just need to write:

DoCmd.OpenForm ‘ORDERS’
The next question is “How do we get the form to open up showing only the
orders which refer to the current customer?” In our case, the CustomerNo field
in the CUSTOMERS table stores a unique identifier for each customer. Each or-
der for that customer also stores that number. Thus Sally Henderson’s num-
ber is 2 and all her orders are identified by this number. We can make use of
this by looking up her number on the Customers form and asking to see only
the orders which appertain to that number.
Most actions can be modified by a series of arguments. The OpenForm action
can have a long string of arguments:

DoCmd.OpenForm formname [, view] [, filtername] [, wherecondition]
[, datamode] [, windowmode] [, openargs]

Frightening, aren’t they? In fact, you can ignore them until you need them. In
this case, all we need is the wherecondition argument. We can express what we
want in English as:

Appendix 1 • GUIs, macros and control languages

360

Open the form called Orders where the contents of CustomerNo field in
Orders is equal to the contents of the CustomerNo field in the current
form Customers.

This actually translates, in Access 2003/Visual Basic 6.3, into :
DoCmd.OpenForm "Orders", , , "[CustomerNo] =
Forms![Customers]![CustomerNo]"

(Note that in Access 2.0 this reads slightly differently as:
DoCmd OpenForm "Orders", , , "[CustomerNo] =
Forms![Customers]![CustomerNo]"

The difference is in the lack of a dot between DoCmd and OpenForm)
Note also that there have to be three commas before the where condition,
which itself must be wrapped up in double quotation marks. Access is per-
nickety on these points of syntax. If you enter this DoCmd statement,

save it and return to the form, it should work.

So which is best?
So what do these three solutions to the same problem tell us about the rela-
tive merits of GUIs, macros and programming languages?
As GUIs get better they give us more functionality (as shown by the in-
creased functionality offered by the later versions of Access) but they can
never provide all of the versatility that macros and hand-crafted program-
ming can offer. I am all in favor of using the GUI as much as possible; it’s
faster and easier to use than either of the other two. However, if you develop
a moderately complex database application with a reasonable user interface
and data integrity checks, you will have to use tools which work at a deeper
level.
Macros offer the next level down, extending the functionality of the GUI.
Macros are still limited, however, and do not provide anything like the enor-
mous flexibility of a programming language. Both the macro and the pro-

Appendix 1 • GUIs, macros and control languages

361

gramming languages take some effort to learn and, surprisingly, often require
relatively different skills; in other words, a good working knowledge of mac-
ros may not make it much easier to convert to using the programming lan-
guage. Perhaps even more surprisingly, I do not believe that programming is
fundamentally more difficult to learn. Macros are easier to use but not by or-
ders of magnitude.
And there is an often overlooked problem here. People who are new to data-
bases tend to assume that their needs are simple. They say things like “Oh, I
just need to generate some realistic sample data so that I can see how the sys-
tem works” or “I just need to change the name ‘Smith’ to ‘Smyth’ in all of
these records”. Both sound simple to the uninitiated but in fact the former is
often very complex while the latter is very simple. The only sensible solution
for the former requires code; the latter can be accomplished with an update
query created with the GUI.
If you are new to RDBMSs, I suggest (with as much deference as possible)
that you may well not be in a position to judge whether you need macros or
programming. In that case, my advice is clear. Unless you are sure that your
needs really are simple, don’t bother learning to use macros. Once you find
that you need more than the GUI offers, go straight to the programming lan-
guage. In this way you avoid the pain of climbing one learning curve only to
discover that the view from the top is unsatisfactory and another climb
awaits you.
If you need further evidence to convince you, consider the GUI solution that I
outlined earlier. When you placed the button on the form, a wizard ran and
asked questions about which form you wanted to be opened and under what
conditions. Once it had collected all of the answers, the wizard wrote a piece of
code for you automatically and attached it to the OnClick event for the button:

Appendix 1 • GUIs, macros and control languages

362

This code appears more complicated than the code I produced but that is
simply because it has some rather elegant built-in error-checking. If you de-
cide to expend the extra effort in learning the programming language, you
will then be able to do precisely what I and many other developers do. We
use the GUI and its wizards as much as possible and then simply edit and
modify the code they produce to achieve the ends we need.

Other languages – SQL
Incidentally, you may well have come across SQL (Structured Query Lan-
guage) in discussions about RDBMSs. You may be wondering, with all of this
talk about control languages, how they relate to SQL. Is SQL an example of
the sort of control language which has been discussed here? The simple an-
swer is “No, it isn’t.”
SQL is a standard language which allows a database to be queried (hence the
name). It can also be used for other operations such as creating tables but it is
never used for interface control as described in this chapter. It is often used to
pass queries between a front-end RDBMS running on a PC to a database

Appendix 1 • GUIs, macros and control languages

363

server sitting somewhere on a network. In other words, SQL becomes quite
important when the database you are building expands from a single-user
database running on a PC to a multi-user database running on a network.
(This expansion is discussed in more detail in Chapter 20.)
SQL is also used internally in Access to describe the queries that you typically
create using the graphical query builder. If you build a query and then select
View SQL, Access will show you the SQL statement which describes that
query. Chapter 29 covers SQL in some detail.

Index

365

Index

1NF see First Normal Form
2NF see Second Normal Form
3NF see Third Normal Form

A
Access 3, 8, 182, 259, 305, 353, 354

and backups 200
and data dictionaries 244
and data integrity rules 167
and logging 200
and triggers 133
and triggers 183
Cascade Delete 137
default database architecture 168
field names 33
Form Wizard 47
query optimizer 341
query tool 258
support for referential integrity 141
text boxes 47
updating statistics 341

Accidental Empires 90
American National Standards Institute

see ANSI
ANSI 149, 151
answer tables 37, 39
Append query 42
Approach 171
architecture see database architecture
archive logging 194
AS (SQL statement) 275
ASC (SQL statement) 269
atomic data 222
attributes 152, 160
authors 1
AutoNumber (data type) 23

as primary key 90, 96

B
backup

off-line 196
on-line 196
strategy 195

base tables 35, 37, 39, 115
BCNF 234
binary chop 324
Boyce-Codd Normal Form 234
Business Requirement Analysis 151
business rules 166

C
Cascade Delete 137
CASE 154
child 108
circular logging 192
client-server architecture 171
closure 37, 112, 272
Codd, Dr Edgar (Ted) 3, 4, 112

Codd’s rules 4, 112, 201 passim
Computer Associates 154
Computer-Aided Software Engineering

see CASE
Computerworld 3
concatenation 50, 121
conceptual schema 151
concurrency 199
control language 358
Control Wizard 354
CPU 320
Cringely, Robert X 90
Currency (data type) 23

Index

366

D
Data Definition Language 258
data dictionary 205, 244
data entry

and data types for validation 46
and forms 31

data integrity 127, 128
application 143
Codd’s rule 211
rules for 166
types of error 127
use of triggers 183
see also referential integrity

Data Manipulation Language 258
data types 22

selecting meaningful data types 24
to control data entry 31
to exclude errors 26
to improve data recall 28
to improve storage efficiency 26

database application 181
database architecture 168 passim

client-server 171
multi-tier 173
selection 176
three-tier 173
two-tier 171

database engine 3
Database Management System 3
database schema 158
database

accuracy 127
and CPUs 320
and database management
 systems 3
and disk capacity 322
and disks 322
and memory 320
and redundant data 63, 69, 215, 237
and relational database management
 systems 3
application tasks 166
applications in seven layers 165
architecture 168

backup strategy 195
business rules 166
choosing an architecture 176
Codd’s rules 201 passim
concurrency 199
data dictionary 205, 244
data integrity rules 166
data management 167
data storage 167
database application defined 181
database schema 158
defined 2
denormalization 344 passim
design 149
domains 307
hardware considerations 319 passim
indexing 324
input validation 166
locking 197
logging 191
logical model 151, 152, 160, 164
null values 88, 309 passim
physical model 150, 160, 164
query analysis 340
relational database defined 181
schema 158
selecting the correct number of
 tables 75
separating ‘data’ from ‘user
 interface’ 170
statistics 340
system tables 244 passim
user model 150, 164
user vs. physical views 150

Date, C.J. (Chris) 3, 181, 233, 242, 309
Date/time (data type) 23
DB2 3, 152, 159, 171, 182
dBASE 171
DBMS see Database Management

System
DDL 258
deadlock 198
decomposition 227
DELETE (SQL statement) 302

Index

367

Delete query 42
denormalization 344 passim
dependency 108

functional dependency and
normalization 224
transitive dependency and
normalization 225

derivable data 120, 351
Difference (relational operator) 250
disks 322
DISTINCT (SQL statement) 262
Divide (relational operator) 255, 257
DK/NF 234
DML 258
Domain Key/Normal Form 234
domains 307 passim

E
entities 152, 160
Entity Relationship modeling see ER

 modeling
ER modeling 77, 151, 154
ERwin 154, 156, 157

F
fields 18

and attributes 160
and indexing 333
data types 22
field names 20
field names 20, 32
field size 28
naming conventions 21, 84

First Normal Form 216, 349
foreign keys 84, 85

and indexing 335
creation 92
defined 91
nulls in 139
summarized 93

Form Wizard 47
forms 14, 45

Form Wizard (Access) 47

in multi-table databases 123
introduced 14
multiple forms per table 48

Fourth Normal Form 234
FoxPro 171
FROM (SQL statement) 261

G
GROUP BY (SQL statement) 277, 283
GUI 44, 107, 108, 166, 167, 171, 205,

258, 353

H
hardware recommendations 319 pas-

sim
HTML 175
Hyperlink (data type) 23
HyperText Mark-up Language

see HTML

I
IDEF1X 163
IE see Information Engineering
indexing 324

applying indexes 333
clustered indexes 327
non-clustered indexes 330

Information Engineering 163
Informix 182
INNER JOIN (SQL statement) 290
input validation 166
INSERT (SQL statement) 297
integrity see data integrity and

referential integrity
internet see web
Intersect (relational operator) 251, 257
I/O 320, 322, 323

J
Java 175
Jet 167, 200

Index

368

Join (relational operator) 254, 257
joins 93

and relationships 160
many-to-many 99
one-to-many 94
one-to-one 96
summarized 106

K
keys

foreign 84, 85, 91, 92, 93, 139, 335
primary 84, 85, 86, 89, 90, 91, 93, 101,
313 passim, 315, 334

L
locking 197

page locking 199
row locking 199

log file see logging
log see logging
logging 191

archive logging 194
backup strategy 195
circular logging 192
content 193
log file location 195
roll forward 194
rollback 191
secondary log files 192

logical model 151, 152, 160, 164

M
macros 355
many-to-many joins 99
many-to-many relationships 82
Marklyn, Bill 1
Memo (data type) 23
memory 320
metadata 244
Microsoft Access see Access
Microsoft Database Engine see MSDE
mirroring 345

MSDE 171
multi-tier architecture 173
MultiValued Dependencies 234
MVD 234
mySQL 3, 171, 182

N
natural join 290
normalization 215 passim, 233 passim

and atomic data 222
and decomposition 227
and functional dependency 224
and logical models 162
and primary key 223
and redundancy 215, 237
and transitive dependency 225
BCNF 234
Boyce-Codd Normal Form 234
Domain Key/Normal Form 234
First Normal Form 216
Fourth Normal Form 234
higher levels 234
MVD 234
Second Normal Form 218
Third Normal Form 220

null value 88, 309
Codd’s rule 201 passim
in foreign keys 139

Number (data type) 23
sub-types 27

Numeric (data type) 23

O
object-oriented programming 73
objects 73, 74

and tables 75
classes 78
identification 78
properties 77

OLE Object (data type) 23
On Delete Cascade 135
On Delete No Action 137
On Delete Set Default 137

Index

369

On Delete Set Null 137
On Update Cascade 138
On Update No Action 138
On Update Set Default 138
On Update Set Null 138
one-to-many joins 94
one-to-many relationships 81, 86
one-to-one joins 96
one-to-one relationships 82
optimization (of queries) 338
Oracle 3, 15, 19, 159, 171, 182, 320
ORDER BY (SQL statement) 268
OUTER JOIN (SQL statement) 291

P
Paradox 171
parent 108
Personal Computer World 1, 242, 313
physical model 150, 160, 164
primary keys 84, 85, 86, 89, 313 passim

and indexing 334
candidate keys 315
characteristics 89
creation 91
selection 90
summarized 93
using AutoNumber 90, 96
using multiple fields 89, 101

Product (relational operator) 251
programming language 358
Project (relational operator) 248, 256
projection 227

Q
queries 14, 36

and answer tables 37, 40
and SQL 44
Append 42
defined 37
Delete 42
graphical tools 43
in multi-table databases 116
query optimization 338

Update 42
see also views

query analysis 340
query optimization 338
query optimizer 339, 341

R
RAID 322
records 18
redundant data 34, 63, 69 passim, 115,

240, 348
referential integrity 95, 133

declarative 134
procedural 134

relation 18
Relational Database Management

Systems 3
relational database

Codd’s rules 201 passim
defined 181
see also database

relational operators 246 passim
Difference 250, 257
Divide 255, 257
Intersect 251, 257
Join 254, 257
Product 251, 257
Project 248, 256
Restrict 248, 256
Select 248, 257
Union 249, 257

relationships 81, 152, 160
and joins 93
and keys 84
many-to-many 82
none 82
one-to-many 81, 86
one-to-one 82

reports
and multiple tables 124
introduced 15

Restrict (relational operator) 248, 256
roll forward 194
rollback 191

Index

370

S
Scottish Heart and Arterial disease Risk

Prevention 61
Second Normal Form 218
Select (relational operator) 248
SELECT (SQL statement) 261 passim
SHARP (Scottish Heart and Arterial

disease Risk Prevention) 61
SPARC 149, 151
SQL Server Express 2005 171
SQL Server 3, 7, 14, 43, 152, 171, 182, 199
SQL 37, 158, 258 passim

and client-server architecture 172
and control languages 362
and ER modeling tools 159
and multiple tables 285
and Views 44
and views 44
conditions for WHERE 263
DDL 258
DELETE 183, 302
DISTINCT 262
DML 258
FROM 261
functions 273
GROUP BY 277
GROUP BY … HAVING 283
INNER JOIN 290
INSERT 183, 297
optimized coding 342
ORDER BY 268
OUTER JOIN 291
query optimization 338
relational operators 246
SELECT 261 passim
sub-queries 272
UNION 293
UPDATE 183, 300
WHERE 262
wildcards 271

Standards Planning and Requirements
Committee see SPARC

stored procedures 187 passim
Structure Definition 29

Structured Query Language see SQL
sub-queries (in SQL) 272
Sybase 182
system catalog 205, 244
system tables 244 passim

T
tables 13

and entities 160
and indexing 324 passim
and multiple forms 48
and objects 75, 77, 78
and problems with data modifica-
 tion 65, 72
and redundant data 63, 69, 215, 237
and transactions 190
and typographical errors 63, 72
base tables 35, 37, 39, 115
context 30
data types 13
denormalization 344 passim
derived data 351
design rules 30
detailed 17
field names 20
general 29
Implementation stage 29
introduced 13
mapping real-world relationships 83
mirroring 345
modification anomalies 230
multiple tables and relational
 databases 181
multiple tables and SQL 285
multiple tables 67, 115, 116, 123, 124
naming conventions 21, 84
normalization 215 , 233 passim
problems with single tables 62
record and fields 18
rows and columns 18
selecting the correct number of tables
 for a database 75
splitting 346

Index

371

Structure Definition stage 29
structure 22
system tables 244 passim
using forms for data entry 46

Text (data type) 23
text boxes 47, 49
Third Normal Form 220, 344
three-tier architecture 173
transactions 190
triggers 132, 172, 183 passim
tuning 319 passim
tuple 18

U
Union (relational operator) 249
UNION (SQL statement) 293
UPDATE (SQL statement) 300
Update query 42
update statistics 339
URL 23
user interface 165, 353

user model 150, 164

V
views 14 passim, 36 passim, 56, 123, 143,

172, 206
see also queries

W
web 23

and forms 51
web-based applications 174

Weinberg, Sharon 3
WHERE (SQL statement) 262
Whitehorn, Mark 1
wildcards 271
wizards 20
World Wide Web see web

Y
Yes/No (data type) 23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

